An architectural play-model: Part 2

 

David Neat model-maker, architectural model 2018, 1:25 scale

David Neat model-maker, architectural model 2018, 1:25 scale

This follows on from An architectural model: Part 1 posted on January 12 where I outlined the purposes of the model, expanded a little on the use of foamed PVC for the build, and detailed my methods for achieving a convincing polished concrete effect. In this second part I am looking at the rest i.e. the ‘generalized’ treatment of the brick walls; my methods for staining the woodwork features; and lucky solutions re the baseboard and veneer cladding.

 

Staining the woodwork

The natural wood chosen by the architect for this project is oak. In Part 1 I explained that I was hoping to emphasize the model’s own sculptural presence, and it occurred to me at one point that a way of doing that would be to give the model its own material integrity, a ‘truth to materials’ in other words .. i.e. by using real oak, even real glass, and even real brick! But in practical terms this hardly ever accords with the functional remit, important in this case, of keeping to scale! So I couldn’t explore that direction at this time. On the question of real wood, there are only a few woods suited to fine-scale model work and fewer available in thin strips or sheets. Oak, because of its hardness and strong patterning, definitely isn’t one of them. So I’ve taken obeche and stained it to represent oak. I could also have chosen limewood ( ‘basswood’ in model shops ), which is even more precise to cut, but I wanted to take advantage of the slight patterning which shows up when obeche is stained. The woodwork features in the architect’s design were mostly related to the window structures so the following group of photos serves to show both (the windows will be dealt with in Part 3).

David Neat model-maker, using stained obeche and PETG clear plastic

David Neat model-maker, using stained obeche and PETG clear plastic

David Neat model-maker, using stained obeche and PETG clear plastic

David Neat model-maker, using stained obeche and PETG clear plastic

David Neat model-maker, using foamed PVC, polyfilla stipple texture, stained obeche and PETG clear plastic

For this staining task I have used one of my favourite methods (suitable for both large or small work), which is to use a clear wax/oil based wood finish as a carrier, with a controlled amount of spirit-based stain mixed in ( it can’t be anything water-based ). I’ve found this much more successful than just using either a straight stain or a staining varnish partly because the wax/oil medium (along with anything added to it) penetrates the wood fibres more evenly, but also because it gives sufficient drying time to modify i.e. to rub away, or even out any excess. Spirit-based stains on their own can make woods like obeche or basswood too dark, unless they’re heavily thinned with white spirit. But then it’s difficult to control what appears once the wood dries out. I made tests using wax/oil varnish with different amounts of Colron ‘Medium Oak’ and there was little difference between the wet and dried results.

David Neat model-maker, samples using Osmo wax-oil medium plus Colron wood stain on obeche

It was particularly important for me to make test samples here, because to reflect the distinctive tongue-and-groove cladding of the original I had to composit separately cut and sanded strips of obeche, otherwise there wouldn’t have been enough tonal difference between the strips. I was concerned though that staining might emphasize those lines in-between too much, but these turned out fine. On the left above I’ve just tried the wax/oil carrier on its own, and for the other two I added small amounts of Colron ‘Medium Oak’ Wood Dye. For those other two I also experimented with adding a little more colour variation using alcohol markers. I did this before the wax/oil was dry, though I think this could be done at any later stage. It shouldn’t be done before the wax/oil goes on though! .. I tried this with the same markers at the top of the middle sample piece. They came out much darker on the bare wood, whereas on the wax/oil the effect and strength is much easier to control.

Spectrum Noir markers, selection of 'browns' ideal for model wood staining

The markers I used were from Spectrum Noir available as a pack of six ‘browns’. I’ve found that these generally have a much richer ink than Winsor & Newton Promarkers, as well as lasting longer and being cheaper in the first place!

Osmo Wax Wood Finish

The wax/oil medium I’ve used is from Osmo .. the photo above includes the tins I still have after more than 20 years and the wax/oil still works perfectly! I used Osmo products quite a lot when I was living in Germany, they were always available at Bauhaus (equivalent to our B&Q here). I used them not only to protect or colour wood, but also to seal or paint any similarly absorbent surface .. even plaster!  In fact, it was a surprise but the Osmo treatment gave the cast plaster forms I was producing at the time the smoothest, best looking and most durable surface I could hope for! But Osmo ‘Wood Wax Finish’ (as it’s marketed in the UK) is intended for wood and comes either as clear, various whites, as a variety of wood stains, or in a small selection of basic colours.

On plaster as on wood, the first coat is likely to dry to a matt finish and a second coat is needed for a ‘satin’ sheen. Like any oil-based treatment the basic Osmo clear transparent will slightly darken any wood (though this is often not so noticeable with very light woods), and it also imparts a slightly yellow tinge (see further along for more on this). In the UK Osmo products have remained specialist, not stocked by any of the big DIY marts, so the best place to look for them is here

https://www.osmouk.com/retail/product.cfm?product=317

 

Generalizing brickwork

In this case there was every excuse to stylize, or rather generalize the brickwork exterior: it wasn’t an important visual part of the model’s function; I wanted to avoid slavish or fussy detail; and I wanted it to appear playful. There was also the fact that I’d really only had the architect’s plans as a guide in making the model, with just a few on-site photos available, so it was also a case of playing it safe. I wanted to emphasize the ‘warm and friendly’ in brick .. the ‘toy’ version of it, as I’d said, or as I imagined it might look mass-produced. I wanted to get a sense of textural richness and unifying pattern too, but time-wise to be able to get it relatively quickly! Embossing horizontal lines in 1mm foamed-Pvc was the quickest way I could think of to suggest the basic ingredient of a brickwork surface, and I’d done some texture tests with Rust-Oleum texture-spray for a previous project. The two effects just seemed to combine perfectly for what I wanted.

David Neat model-maker, archetectural model 2018, brickwork effect

David Neat model-maker, architectural model 2018, generalised brickwork effect

I used an embossing tool to score the lines in 1mm Palight. These are basically like scribing tools but with a rounded point instead of sharp ( in the UK, Poundland has them in their nail art section ). I had to try a few different orange or rust-red sprays to get an idea of the right direction for the base colour ( using red primers or leftover Montana cans ) before I could settle on the best .. MTN 94 Phoenix Orange. I left the sprayed pieces to fix more than day before going lightly over with Rust-Oleum ‘Pebble’ Stone Textured Finish. These Rust-Oleum sprays spit out tiny gobs and streaks in two colours at once and the effect is often better when subtle, but also I didn’t want to hide the base colour too much.

David Neat model-maker, brickwork effect tests 2018

 

The baseboard

For the baseboard .. which is to be honest usually more hassle than enjoyment .. I was especially lucky that the smallest size of IKEA table-top suited the model perfectly! I’d strongly recommend these table-tops because they’re relatively light but suitably solid, in a variety of rectangular formats and a number of immaculate finishes including satin white, dark blue and beige. They also work out cheaper than ordering good quality MDF or plywood cut to size, plus if you pick up from store you can see what you’re getting. Incidentally, I like the idea of models having a certain size relationship with the human figure, just as pieces of furniture do. I feel that the small table-top format traditionally 4ft x 2ft average, now 1200 x 600, has a similar dimensional presence to a small person.

David Neat model-maker, architectural model 2018, bird's eye view

David Neat model-maker, baseboard from IKEA

As I’d explained in Part 1 of this write-up, the ‘building blocks’ of the model were designed to be removable and I wanted to give them clear ‘footprints’ to lock into. This meant a raised surround with the shapes cut into it, not just a sprayed design on the floor. I was thinking here of the tactile experience of making objects connect, of feeling the joining more, rather than just sliding parts around. I cut the surround shape out of 2mm Palfoam (I’d waited to do this until I’d got all the room structures made, to make sure of a good fit). Instead of making each room as a box with the floor included I made them as open boxes to fit around floor shapes which became part of the base. I thought this was more interesting, as it gave the opportunity of revealing a more convincing ‘ground level plan’ underneath.

David Neat model-maker, architectural model 2018, baseboard with 'polished concrete' floor areas and veneer surround

We’d gone through a few ideas for possible treatments of the surround, including a blotchy watercolourist abstract suggesting tree and shrub shapes seen from above. But from later building site photos it was unclear to me how many trees and shrubs would actually be remaining, and in any case I was running out of time .. so after thinking about a variety of quick surfacing options which would never have survived, I chose oak veneer because it was sympathetic and felt appropriate.

For the least possible hassle I wanted a veneer which was self-adhesive, also the best choice when cladding Palfoam. I’ve used these before and I’d recommend getting them from The Wood Veneer Hub because I think the prices compare well and delivery has always been quick. With veneers there aren’t usually many size options, for the 60cm width I required I had to get 2 metres, total cost around £45. The best way of organizing the sticking in this case was first trimming the veneer to a little over the length; laying it glue-side-up on a flat work surface; peeling off the backing paper; then carefully and slowly lowering the Palfoam surround shape onto it starting from one end. The thorough directions that came with the product recommended using what they call a ‘veneer scraper’ in other words a hard plastic smoothing blade with which to press down on the veneer strongly while sticking. I didn’t have one of these but I cut a rectangle in Palight, sanding the edge a little to prevent it from scratching. The adhesive is very strong but I think it pays to be thorough i.e. just smoothing it down with the hand or a cloth wouldn’t be enough.

Once this was done I could turn it over, place on a large cutting mat and trim the edges with a scalpel. Oak is a hard wood but the veneer is extra thin, so this wasn’t difficult. I’d made sure that I’d kept the backing paper so that I could put some back on the interior leftovers. Since I had trimmed the veneer from its underside, the final task was to smooth down all topside edges (120 grit sandpaper) because otherwise they would catch.

Wood veneer comes unfinished, that is, the wood surface may look beautiful and feel smooth but it will need protection from dust and dirt. Medium-tone woods like oak will quickly show darker finger-marks. So I knew that I would have to seal the wood surface but I really didn’t want it to go any darker. In the end I went a little the other way .. in the photo below I’ve laid a piece of untreated veneer over the final effect for comparison.

David Neat model-maker, architectural model 2018, making veneer surround

Osmo Wax Wood Finish and Rustoleum Clear Sealer

It’s vital to make test samples before using any type of wood treatment because sometimes the results are most unexpected! Here below for example, the first two tests on the left were Rustoleum Clear Sealer a matt water-based sealer I’ve used in the past on lighter woods such as ash or sycamore. On those it worked perfectly, the sealing coat was practically invisible with no change in colour or tone, but for some reason on the oak it couldn’t have been more different! As a second test, I diluted the sealer 1:1 with water, and this was different but still surprising. For the third on the right I tried Rustoleum Furniture Lacquer a matt spirit-based finish which is normally intended as a protective coating for chalk paint. This result was much more as I’d expected.

 

David Neat, samples using different sealers on oak veneer

In the end I went for the Osmo Wood Wax Finish, mixing the clear version I had (No. 3101) with some transparent white (No. 3111). Below from the left is the straight clear, then the transparent white and lastly a 1:1 mix of the two which was the final choice. With any mix like this which contains some pigment it’s important to use a soft flat brush and to keep working the liquid into and over the surface to avoid any pigment pooling.

David Neat, samples using different sealers on oak veneer

David Neat model-maker, architectural model 2018, veneer surround

In the course of working on this base layer I successfully solved a problem which had troubled me for a long time. How can you place a large cut-out shape (such as the one above) into exactly the position you want it (with a nice 1cm margin all round in this case), making any slight adjustments that might be necessary, but then stick it down without moving it from that exact position? Of course I’d thought about pencilled corner guides, even little corner blocks, to fix the position for later when the glue-covered surface is impatiently waiting! That’s the whole problem .. anyone who’s tried to manoeuvre a large, bendy, sticky sheet into exactly the right position before any of it starts sticking anywhere it shouldn’t will know the problem!

Ultratape Rhino Double Sided Carpet Tape

I solved the problem, thanks partly to double-sided carpet tape. This is a good one .. ‘Rhino’ Double Sided Carpet Tape, from Ultratape .. I’ve used it for years and it’s often sold very cheaply for some reason. I knew that this kind of smooth, thin carpet tape would be fine for securing smooth Palfoam to a smooth, manufactured surface (in this case painted MDF). It just doesn’t usually hold that long on porous, dusty or uneven surfaces.

I hoped that I could take full advantage of the fact that the tape could be fully applied, as shown below, and then stripped of its non-stick covering, but in stages. Take note of the little square of tape that I’ve put in the bottom right corner.

David Neat model-maker, using carpet tape to laminate on model baseboard

Once the taping was done I turned the sheet over, positioned it on the baseboard exactly as I wanted it, but then put whatever weights I had near the far three corners leaving that corner with the square of tape free. I could then carefully bend that corner up a little just to get at the tape covering and pull it out with tweezers. Then I could press this corner firmly down. Now it’s stuck at one corner and all the other corners are still fine. Then it was a case of carefully repositioning weights so that enough of the sheet could be flexed to get at the end corners of tape lines, to pull out the covering strips .. progressing in this fashion roughly diagonally from where I started. Incidentally I had to use this photo taken to remind myself where I’d put the pieces of tape because they’re not all easy to see once the sticking starts.

David Neat model-maker, weighting down base cutting while fixing in position

In the final part to come I will be looking at the various options for making the windows in the model.

Advertisements

An architectural play-model: Part 1

 

David Neat, architectural model, 2018

I was asked to make a model of gallery rooms newly added to a private house in Hampshire, and have been working on this part-time for the last few months. The focus was on the interiors, since the idea was that the owners could use the model to explore different arrangements of the contents, but it was agreed that the model could also have an aesthetic presence of its own .. as a sculptural object in itself .. so I took the freedom to stylize aspects of the exterior and to avoid fussy detail. After initial talks with the friends who’d commissioned it the model developed its ‘plaything’ nature .. somewhere between dollshouse and construction kit .. as it progressed. From the beginning the plan was that there would be detachable sections, making it possible to peer into parts of rooms, but that these ‘building blocks’ could be quickly and cleanly reassembled again. This suggested a baseboard with cavities into which room sections could be slotted into place .. further adding the qualities of ‘jigsaw’ and ‘puzzle’ to the aspect of play.

We wanted the roof structures to be represented, mainly to illustrate how the interiors are crowned by these light-receiving cones. But I only wanted to ‘outline’ them as it were, and they needed to be detachable. Giving them any suggestion of their external nature would have made them too heavy-looking, so I took advantage of their separateness to make them  ’emblems’ in yellow Palight.

David Neat, architectural model, 2018

David Neat, architectural model, 2018

David Neat, architectural model, 2018

 

Working with Palight and Palfoam

Once again I wanted to use my favourite foamed PVC for most of the build, because it is one of the most manageable and versatile materials I know! Using this would also mean that the individual ‘room blocks’ would not become too heavy while still being structurally very solid. At the chosen scale of 1:25 the main walls came to roughly 15mm thick in the model, while the interior walls could be represented with 5mm. I had quite a large stock of 5mm, but I chose to build each section of thick wall as a ‘sandwich’ i.e. solid 5mm PVC both sides, with a 5mm thick framework in between. This was partly to reduce the weight ( and therefore the stress on the boxes ) a little more, but also because I wanted to build in a continuous groove along the tops of the walls to slot the ceilings into. In retrospect I wouldn’t do it this way again if I could help it .. it was an awful amount of cutting, sanding, aligning and gluing!

David Neat, architectural model 2018, detail of foamed PVC walls

Here in the UK Palram’s ‘Palight’ brand foamed PVC is available in white or a small selection of colours, and comes in a few different thicknesses. But of the white only the 1mm thickness is actually Palight. In the thicknesses from 2mm to 10mm ( there used to be thicker, but no longer it seems) the material is Palfoam. This is important to know, and to check when ordering, because Palfoam is softer. This makes it even easier to cut ( with a scalpel for example, as I do, and especially if one cuts along the extrusion grain i.e. along the less bendy direction ) and it glues together even stronger because the cut edges are more porous. But the surface of Palfoam is much more susceptible to scratching, so something needs to be done about it if it’s being used for a model that’s going to be handled.

David Neat, architectural model 2018, white wall texture samples

I knew that I was going to clad the outsides anyway with whatever I came up with for the brickwork effect, so my first task was to find a covering which would be suitable for the interior walls, which in reality were just white-painted plasterboard. Apart from the practical durability aspect I wasn’t happy with the idea of just white PVC walls anyway .. it’s the most uninteresting, lifeless form of white! One possibility was cladding the interior with Daler Rowney ‘Georgian’ oil painting paper ( on the left above ) which is quite a tough 250gsm, primer-coated and ‘linen’ textured paper. This is available as pads or sheets. The other idea was evenly stippling Polycell’s Fine Surface Polyfilla directly onto the PVC ( shown on the right ). I’ve textured PVC this way before  so I know that it stays put and resists scratching better than the plastic alone. It’s tricky at times to maintain an even quality of stipple, and the oil painting paper was the easier and quicker of the two to do, but I was worried that the paper could scuffing at the edges after repeated handling. Fine Surface Polyfilla is also a more sympathetic, slightly warmer white, so I chose this for the wall treatment.

David Neat, architectural model 2018, detail of stippled texture on walls

 

Simulating polished concrete

The most important aspect of the interior, the part which needed to look ‘convincing’ above all else, was the polished concrete floor. Especially so, since floors assume greater significance in models than in real life, because we’re mostly looking straight down on them. That usually can’t be helped, but it’s one of the reasons why we chose to make the model in removable parts, making it possible to get more of the ground level perspective.

David Neat model-maker, architectural model 2018, polished concrete floor

David Neat model-maker, architectural model 2018, polished concrete floor

I was originally going  to go with a method I’d tried before, using matt photo prints of actual concrete and achieving the polished look by spraymounting clear acetate on top. I’ve used this technique for very convincing marble or polished wood, easy to play around with because the parts can be ‘tweaked’ separately instead of having to achieve it all-at-once, and satisfying to look at because the surface effects ‘come from within’ rather than lying opaquely on top. Incidentally, it’s interesting to observe from the last three photos how .. even in simulations! .. the particular warm greenish-grey of concrete can alter quite a bit dependent on the light. I’ve noticed many times in real life how much concrete can change its mood under different lighting.

David Neat model-maker, recycled paper

As I was saying, I’d planned to create the concrete with photos but by chance I happened to have a cheap, recycled paper that worked even better as a basis. These (above) were file dividers found in a £shop which I’d kept because their back surface was interesting. The grey ones were a good basis in terms of colour and mottling, a suitable warm greenish-grey, though a little too dark and too even. But I found that if I use a sanding sponge on the paper  I could make it lighter, while giving it a bit of animation.

David neat model-maker, simulating cocrete with recycled paper

David Neat model-maker, concrete effect samples

Embossing the back first with a serrated modelling tool created other distinctive patterns in the paper when sanded. I didn’t want this kind of patterning in this case, but it’s an interesting effect.

David Neat model-maker, polished concrete simulation using recycled paper and acetate

I had to cut the floor pieces out of 2mm Palfoam first, clad these in the paper ( spraymounting down using 3M’s Craft Mount, the strongest ), modify the paper surface by sanding, vacuum the surface to remove any dust .. then I could apply the acetate. This is straightforward ‘transparency film’ designed for printing on, sometimes also called ‘OHP film’ ( for overhead projection ). Hence it’s surface feels slightly rough on one side, because there are micro-deposits of clear priming material to help the ink to fix. It is this side of the acetate that needs to be spraymounted, then laid and firmly rubbed down over the paper. Now the glossy side of the acetate is on top. This is usually too glossy for a polished concrete surface ( though it depends what look you’re going for) so I take some of the gloss away by rubbing either with a kitchen scourer or very fine sanding sponge ( the kind painter/decorators use for matting paintwork ). This will deepen but also slightly lighten the effect.

David Neat model-maker, samples for a polished concrete floor

I felt in the end that my polished concrete was still a little too dark and not ‘beige’ enough, so I gave all the pieces a light and mottled dusting with Belton Molotow ‘Stone grey light’ spray paint. Above .. to the left is an example of the photoprint method (which in this case was far too busy and specific); in the middle is the recycled paper/acetate version; and on the right the final adjustment adding a dusting of spraypaint.

In the next part I will be talking about the baseboard, describing my methods for staining woodwork, and a ‘generic’ or stylized treatment for the brickwork.

 

‘Model-making Basics’ – modelling and shaping

Please note before you start reading this older post that I have long since included a version in the Methods section, under Making realistic models, which can be accessed above. That version may have been updated or expanded since.

This is the third of five outline accounts dealing with what I consider to be the five defining areas of model-making work; main construction, fine construction, modelling/shaping, creating surfaces and painting. I’ve written these overviews in preparation for teaching sessions at RADA ( Royal Academy of Dramatic Art ) in London. So they’re tuned towards the specialities of theatre design model work, but most of the points will be relevant in general terms to model work in other disciplines. I’ve started with the general ‘themes’ or requirements of the subject .. in other words the ‘ways of thinking’ behind the practical work .. and this is followed by a selection of ‘ways of doing’ giving more specific and practical guidance on the materials and methods used.

As I see it, ‘modelling and shaping’ encompasses the making of any element in the model that cannot be achieved by methods of construction. That is, if a form or part of a form cannot be achieved by cutting sheets or strips of bought material and assembling the pieces, it means that it has to be either shaped or modelled. So for example this would include model figures and trees; forms of relief decoration which are more than just cut outs; the making of specialized forms such as globes, domes, bowls, niches; soft furniture such as armchairs, sofas .. I’m sure you get the idea! Some of these things can be bought, including figures or trees, but usually the likelihood that these are ‘just the thing’ is slim. It’s very easy to persuade oneself that it’s a good move if it will save hours or even days of time, so one should guard against ‘cheating’ oneself by compromising on what one really wants. Nevertheless it is worth knowing what the options are for a number of difficult forms, such as transparent globes or domes for example, because believe me unless you are a highly experienced maker there’s no easy way of making such things oneself. 1:25 scale figures can be bought and are often used, but again I’ve seen too many examples of their careless use in theatre design models to want to recommend this solution.

It’s expecting rather a lot of a theatre designer to be a good sculptor too, especially a good sculptor of miniatures! .. and modelling is traditionally the province of the sculptor. For this reason ways have to be found of keeping within one’s ‘comfort zone’ in terms of knowledge and skills. You can’t know and be able to do everything! There’s no such thing as ‘cheating’ here (except in the case of cheating yourself, as above). What counts is that you’ve done what you can to make the model look as you want it to look, and it conveys your design intentions, regardless of the means you’ve employed. Most ‘serious’ sculptors have tricks which they don’t like admitting to for whatever reason and a number of those are included here. But any method of getting the job done which you imagine a serious sculptor may frown on .. is in this context probably worth a try!

GENERAL APPROACH

The difference between ‘modelling’ and ‘shaping’

The main thing is .. ‘organic’ shapes with little geometric regularity such as human figures or trees are more easily modelled, whereas more streamlined forms such as domes or niches are more easily achieved by controlled shaping. Modelling is generally additive, usually starting with a support then adding an amount of soft material, then adding more, etc. .. modelling is ‘pushing a soft material around’ until it’s where you want it to be. Shaping, at least the kind I do with the materials I’ve chosen, is generally subtractive .. the form usually starting as a block which then has successive parts taken away from it until the intended form is all that’s left. One major consequence of this difference is that modelling can usually be back-tracked if a mistake is made whereas shaping usually cannot. If too much modelling material is added or if it ends up in the wrong place it can be removed or moved, whereas if too much is taken away when shaping wood or foam it can’t be put back. For this reason modelling feels more free, there’s room for improvisation and chance, and there’s room for taking risks and making mistakes because these can be smoothed away if they don’t work. In fact modelling has to progress in this manner. Shaping on the other hand needs a different ‘mindset’ .. it needs to be more anticipated and must be quite tightly planned, leaving little room for chance or experiment.

Choices of modelling material

Of all the materials for modelling available now, natural clay remains the most reliable and versatile, in addition to being the cheapest by far. In its fresh state it is one of the softest, smoothest, and can be made more ‘liquid’ very easily, so it can be almost ‘smeared’ on when fresh, and successive layers fuse with each other readily. As it loses water it firms up, allowing more detailed modelling, and even fine carving at the so-called ‘leather hard’ stage. But as it dries it also shrinks and cracks, small forms are very fragile when dry if left un-fired, and larger forms are heavy .. so unfortunately it’s not suitable for model-making. But a number of different modelling materials have been developed which either remain in a soft, workable state for much longer or harden by themselves.These have a range of different properties, but they can basically be grouped into three categories (though some overlap more than one). Incidentally, I’m just going to say ‘clay’ from now on in place of ‘modelling material’ as a general term.

There are the plasticine clays which remain soft and workable almost indefinitely, even after long exposure to the air. Most of them cannot be made hard and durable. Their basis is usually an oil or wax (at least something other than water) and a filler, such as finely powdered natural clay or talc. Examples modelling wax, plasticine, Chavant, plastilene, etc. Polymer clays such as Super Sculpey can be hardened and more properly belong to the third group, but if they’re not baked they will remain workable for as long, at least as long as plasticine. In my experience modelling wax is the leader of this group .. at room temp firm but softens quickly, does not stick to fingers, can be smoothed with hot tools. Many waxes can be melted to a liquid state in order to be poured into a shape (only some ‘plasticines’ can, such as the American Van Arken brand). Here in the UK the ‘Newplast’ type of plasticine in long blocks is probably the easiest clay to obtain, and relatively cheap at an average of £1.80 for 500g. It is easy to model with, although when very soft I find it too sticky .. it gunges up finger-tips and is not ideal when impressing with texturing tools etc. Importantly though, plasticine will accept coats of Pva wood glue, which toughen the surface and allow it to be painted. Pva wood glue contracts a great deal as it dries so there is usually no danger of losing detail in the modelling, even after more than one coat.

Modelling waxes

Modelling waxes, plasticines and polymer clays all come in different hardnesses .. at least, certain brands do. Above are two types of modelling wax, the brown one very soft like natural clay and the white one much firmer. For more on working with these see Modelling wax in the Materials /- modelling section.

There is a significant, but subtle, difference between modelling waxes and plasticines in terms of their surface behaviour when being modelled, which some may find fairly crucial but others may not. It’s a bit difficult to describe, but on the whole modelling waxes have less elasticity meaning for example that if you impress a cocktail stick against the surface you will get an exact groove with quite hard edges. If you do the same with plasticine (and particularly Super Sculpey, which is even more elastic) you will also get an exact groove but the edges will be more rounded because the material there has been pulled down a bit. In other words, plasticines and polymer clays are a little more rubbery, and this can save time if you’re going for smoothness. But on the other hand it means that these materials have a significant ‘push-back’, a little resistance to being pushed around, which can make very fine and sharp detail a bit more difficult. Generally the softer modelling waxes are similar to natural clay in having really no ‘push-back’ at all.

To get back to the three basic types of clay .. the second category is the air-drying materials which all share having water, in the place of oil, as a carrier and these will harden as the water evaporates. Since some of their content is lost in this way they will shrink .. and some of them will shrink and crack badly!  Examples  natural clay, Paperclay, Newclay, Claydium, Das, etc. Many have a fibrous texture which helps in holding them together but often makes fine detail difficult. Some are light, some are quite heavy. Pricewise they are very good; after natural clay some are the cheapest clays around! I usually only use the air-drying, pulp-based clays if I want to built up a rough core modelling shape easily and cheaply, but only if I’m not bothered about cracking or the time it will then take to dry.

The final category includes those clays which will set or ‘cure’ as the result of a chemical reaction, brought about either by two reactive parts being mixed together or by heating. Examples Milliput (2-part epoxy putty), Green Stuff, polymer clays. My firm preferences from this group are two, Super Sculpey and Milliput. They are very different materials to model with and I use them for very different purposes.

Super Sculpey (that’s the full brand name for this type unfortunately, not just me being enthusiastic!) is almost as soft and ‘pushable’ to model with as a soft modelling wax and just as non-sticky ‘finger friendly’. It doesn’t stick to itself as readily as soft modelling wax or natural clay but it will with just a little extra coaxing. I prefer it for modelling medium-sized forms which need a combination of surface detail and smoothness .. a puppet head with sculpted hair for example .. because I find smooth contours much easier to achieve with it than wax, but at the same time very detailed textures can be achieved by imprinting with texturing tools. Super Sculpey can be easily modelled up in layers, heated in between. More on this is included later when discussing model figures. The only characteristic of Super Sculpey that I don’t like is it’s very slight translucency which sometimes makes it difficult to judge surface detail. There is more on Sculpey in the summary page I’ve included in the Materials /- modelling section. Below is an example of a small fish form I had to make in Sculpey which needed to be baked and fitted into a curve, so I had to rig up a curved cardboard support for modelling it on. Small forms don’t take so long to bake so in this case the cardboard survived the hot-air gun.

modelling a stylised fish in Sculpey

Milliput’s main distinction is it’s hardness once fully cured, much harder than a polymer clay. I use it for small or delicate forms which I really want to last .. small, because Milliput is more expensive than Super Sculpey. It is much more difficult to model freely with, having far too much ‘push-back’. The two component parts of Milliput need to be mixed together in equal amounts and the window for modelling before Milliput becomes too hard is 1 – 1.5 hours. For more information on Milliput, there is quite a long entry in the alphabetical Lexicon.

Just for the heck of it, out of interest and for those of you who are really price-conscious here is a comparison I put together earlier this year. I have taken prices from the sculptor’s shop Tiranti in London, which I know are fairly average or ‘reasonable’ .. not the cheapest but certainly not the highest! I have compared the price per kilo even if the materials are not normally packaged in this amount and where there is a price range it reflects the cheaper price for larger amounts:

Natural clay £0.47-£1.27 per kg £11.88 per 25kg, £6.37 per 5kg

Newclay £1.19-£1.96 per kg £15.08 per 12.6kg, £8.83 per 4.5kg

Newplast £3.56 per kg £1.78 per 500g 10% off 20

Claydium £3.94 per kg £1.97 per 500g.

Plastilin (Flints) £5.10 per kg

Modelling wax Terracotta Wax or Scopas White Modelling Wax £9.29-£12.72 per kg £46.45 per 5kg, £6.36 per 500g

Chavant £10.45 per kg £9.48 per 907g

Milliput Standard £20.10 per kg £2.28 per 113.4g

Super Sculpey £20.64 per kg £9.37 per 454g

Milliput Fine White £44.62 per kg £5.06 per 113.4g

Green Stuff £156.33-£240.50 per kg £4.81 per 20g, £9.38 per 90cm

The principle of ‘controlled limitation’

This is not an ‘official’ phrase but one I have assembled myself to help me to think about it. It is a principle behind all successful making but applies particularly to modelling and shaping. It makes me think of ‘damage limitation’ and conjures up a film scene of soldiers building a strong barrier around a bomb to contain the blast. Perhaps ‘containment’ would express it just as well.

I remember always being very impressed, and equally relieved, hearing about the ways sculptors make their lives easier! For example making a block of wood firstly into a rough profile shape of the whole head, to define the limits .. or rather to remove what one was certain one didn’t want first .. before going further. Working in the other direction (i.e. building up rather than removing), I was impressed when I saw the method of sticking long nails into an emerging clay head to set the positions of key points on the eventual surface.

But put sculptors aside for the moment .. without doubt, craftspeople are better at coming up with ingenious ways of making their lives easier! The photo below illustrates a delightful technique called sledging which is still known to some traditional plasterers, used to create profile shapes particularly for wall cornices. After some basic volume has been roughed in using coarse plaster, a layer of finer plaster is shaped by dragging a cut metal profile along it which collects and removes the excess.

sledging a shape

Another example for a more complex form is provided by the schoolmaster/model-maker Thomas Bayley in his truly precious book The Craft of Model Making, last published in the 1970s. Here he shows how to tackle interior alcoves and domes by first making a positive shape from which a shell cast can be taken. He recommends making the main shape of the positive by means of, what he terms, ‘running with a template’.

Thomas Bayley 'The Craft of Model Making'

These methods may offer a manageable solution if one has time and patience, but they are by no means simple to achieve, even the first example! One does also need quite a bit of skill and practise. I include them here because they are more important as examples of the type of thinking that one should do .. thinking in terms of templates which control the material and limit the ‘damage’, but also ‘thinking in negative’ which there will be more about later.

These methods of control all apply to making larger-scale forms and are designed for precision .. whether of line, smoothness or detail. When it comes to modelling on a smaller scale a lot less precision is needed .. one can often get away with good ‘suggestion’ rather than realistic depiction. This, together with the fact that things like weight and structural integrity are not such issues at a smaller scale, means that the solutions for modelling forms or creating shapes can be more free and varied, that is .. not tied to conventional sculptural methods.

For example below I am modelling a figure directly onto a drawing, without using an armature. The idea with this is that the complete front half is modelled, the material is then hardened, after which the back half can be continued directly onto it. The big advantage here is that the drawing imposes clear limits i.e. it is almost impossible not to get the general proportions and shape of the figure right if one keeps to the drawing.

modelling on a template _1

I’m using Super Sculpey here, a flesh-coloured polymer clay which, as I’ve said, is one of the softest and most malleable. It hardens with heat, which means that the usual way is to bake it in a normal oven (130 degrees centigrade, c.15 mins for each 6mm of thickness used), but it can also be hardened quite well using a hot-air gun, which is better for the task here. One needs to be careful though, when heating the figure up, that the paper template doesn’t start buckling too much with the heat. Normally I’d suggest having the paper glued down to a board, but it’s better if the paper is not because then it’s easier to peel away from the baked first half without damaging it.

The disadvantage of this method of ‘modelling flat on a template’ is that obviously it works better for forms which keep mainly to one plane, as with this figure ‘standing to attention’. It helps a lot to have copies of the drawing close to the modelling, as below, and it’s pretty essential to work out a clear side-view to be able to check the thickness being built up. As I mentioned, a conventional sculptor would not work this way, arguing that one can’t get the same sense of the overall three-dimensionality and poise of the figure while working. But for the purposes of suggesting figures in a model, whether they’re there as characters in the drama or features of the architecture, I think the benefits of being able to keep to a template outweigh the shortcomings.

modelling on a template_2

I’m not suggesting that all model figure work can be done this way. Normally a sculptor builds up a modelled figure on an armature, which is a skeletal support for the figure usually out of wire, and it makes sense to do that even at this small scale. Getting the armature right is more than half of the task, at least in terms of importance. A good armature is not only there for structural support, it should also be as far as possible a guide as to where to put the clay .. it should impose some control. The small figure armatures below are ones I’ve featured in my book, but I describe a quicker method later when we look more closely at figures. The ones below are made of soldered brass and they include double thicknesses of brass on the legs and arms but broken at the joints so that these can be bent at the correct points. They also include flat plates (in brass shim) representing torso and pelvis, which although not strictly necessary for support, are invaluable for keeping the sense of the shape of torso and pelvis while modelling.

small figure armatures

Below is a fuller sequence of photos which illustrate the use of ‘controls’ when shaping soft foam and the usefulness sometimes of having a harder ‘core’ shape to model on. For this task I had to make a 1:6 scale model of an ornamented fireplace, including two large fish sculptures either side. This was for a film still in production, so unfortunately copyright prevents me from showing the completed fish forms until the film comes out, but I can show enough to illustrate the modelling process. Because the fish needed to be symmetrical I decided to make the same basis shape for both out of styrofoam, cutting a template shape first out of Pvc for one and using it flipped over for the other. Below, I have secured the template shape to a block of styrofoam using double-sided tape, which holds it firmly while shaping but which can be easily detached afterwards.

fish base form_1

Knives and wood rasping tools can be used to get close to the edge of the template shape ..

fish base form_2

.. but I prefer to use a sanding block and more ‘control’ to reach the line. I’ve made a round sanding block from a cut piece of thick cardboard tube (the kind used for rolls of carpet or upholstery fabric) with 60-grit coarse sandpaper attached.

fish base form_3

The sides of the sanding block are at a right-angle, so if both the form and the sander are kept against the work surface while sanding, at least the basis blocks for each shape will come out the same.

fish base form_4

I then sanded (or rasped) these freehand, but both at the same time .. i.e. a little off one, then the same off the other .. until I reached the right shape below. Unfortunately I didn’t take a photo in between the two here in this case, but the best next step would be to shape down the top surface on each block first before doing anything else, because this slope can be easily compared. After mostly using a coarse wood-file, I finished off the form below using a small piece of coarse sandpaper. I’ve begun to press the first layer of clay (in this case I’m using Super Sculpey) onto the styrofoam. Because Sculpey really doesn’t want to stick to styrofoam, it was important to work it in thinly at first to ensure a stable coating before adding more.

fish base form_5

Below, I have built up a good, even layer ready for the modelling of the surface details. Making a block styrofoam core-shape like this has a number of advantages .. it means that the modelled shape has a more controlled basis as I’ve said, just like the wire armatures; it gives a firm basis for pushing against, particularly if surface details are achieved by pressing or imprinting, without the fear of pushing the overall form out of shape; it economises on modelling material (some, like Sculpey or Milliput, are expensive compared to natural clay); and it reduces weight, without making the form itself much weaker.

fish base form_6

A note of caution though! .. I modelled these fish in Super Sculpey and didn’t need to harden them because I was making moulds and casts from these prototypes. Heating a very thin layer of Super Sculpey on styrofoam (using a hot-air gun) can distort the styrofoam shape if it gets too hot. If you’re using this method for a one-off where you need a permanently hard surface a thicker Sculpey layer (i.e. c. 5-6mm) would most probably be ok, because the styrofoam would be partially insulated. Otherwise you have to use Milliput or another self-hardening clay.

In the section ‘Making curved shapes in styrofoam’ later on I demonstrate another method of controlling a shape using specially shaped sanders. These are not things one can buy but they can be easily made. I found that only a thin strip of sandpaper was necessary to sand styrofoam (or the polyurethane foam from Kapa-line foamboard you will see later). If this strip is supported on a shape it means that the area of foam sanded will gradually take that shape and this will work for convex as well as concave shapes.

sanding shapers for foam

Developing the ‘scanner eye’

Some people are good at looking at a subject, whether it’s standing before them or recorded in a photo, then looking at the copy they’re making and recognizing how the two differ .. i.e. what exactly needs to be added to or subtracted from their copy and where. Usually it’s something they’ve acquired and developed through a lot of practise at looking at things, so it’s a skill that theatre designers in particular should have already and be particularly disposed to developing. It’s a fundamental of being able to model a likeness! I believe that simply improving your ability to look at and compare things objectively is the most important step towards acquiring skill in sculpting. For example, next time you’re on a train compare the shapes of the heads you see around you. Try to estimate how big people’s foreheads are in relation to their heads as a whole. Are hands bigger than faces, is the length of a nose roughly the same as the distance from it to the bottom of the face, is the space between the eyes the same as the length of an eye? These are simple things to try, you can devise your own questions, and this type of conscious looking won’t fail to improve your abilities if you practise it whenever you have a spare moment.

‘Thinking in negative’ or approaching the form as a void to be filled

Up to now I haven’t included the methods of mouldmaking and casting within this series because they’re more specialised, a whole other subject in itself, and I’ve already written a general summary of it Beginner’s Basics – Mouldmaking and casting explained which can be found under Methods /- Mouldmaking and casting. But I’m including this brief example here because it illustrates a different approach to making a form. It is a method of form-making which goes back a long way and is now an integral part of our technology. I’m sure most people are aware of the principles of it, but almost exclusively in the context of ‘making many copies of something’, which somehow prevents the recognition of it as a solution to making single forms.

The challenge of making a model of a bath is a very good example of what I’m talking about! Most often we only need one, and we know that ideally it should be as thin as possible, so our thinking is automatically channelled in the direction of trying to construct the shape in a thin but bendable material. This would be fine if the curves and slopes of the shape were that simple. If however we think of the essential shape as a solid one first, so that we start with a three-dimensional form template in other words, a lot more is achievable.

making a bath shape

These two photos are enough to illustrate the method. I’ve made the ‘prototype’ bath shape using the foam from Kapa-line foamboard (which I’ll say more about later) but styrofoam would also have done. For the fish shape previously I used one shape template to guide the sanding block, whereas this needs two to establish the limits of the top and bottom of the shape. These just need to be fixed in the right positions either side of a rough block of foam and the excess foam is then sanded away down to the edges of both templates. Finding the right positions for the templates, either side of a block, is not that simple though! The best way is to fix the larger template to the foam first and sand down to that using a right-angled sanding block (just like the fish). This will give a much clearer indication of where the smaller template should be positioned on the other side. The sanding can then be completed.

making bath shape in foam

I coated the foam shape with polyfilla and sanded it smooth, then made a plaster mould from it. In this case I made the hollow bath shape using a fairly simple process known as absorption casting. The principle behind this is that the plaster mould will absorb water from a liquid material filling it, meaning that the material gradually forms a tougher skin next to the plaster. The remaining still-liquid material can be poured out of the mould leaving a thin shell which is left to dry. This contracts a little as it does so it can be taken out easily. It’s the method used, on an industrial scale, for casting crockery using clay slip. I’ve used a special form of liquid papier-mache called Liquache which is not so available in the UK (but I’ve included one source in my Suppliers list). An alternative would be to use the more familiar method .. the beloved ‘balloon pasting’ one .. of papering the inside of the mould with small pieces of newspaper and glue. The mould surface would need to be Vaselined first though. In actual fact, if the thin shell is built up this way there’s no need to make the negative mould at all .. it could be built up on the prototype form, as long as it’s strong enough.

PRACTICAL GUIDANCE

Making model figures

Let’s just assume for the moment that making three-dimensional scale figures to inhabit a three-dimensional scale model is a good thing, before arguing the pros and cons of having to do them! The first thing that’s needed is information. We need to know what the human figure looks like and, just as importantly, what it looks like at 1:25 scale. When I’m modelling in 1:25 scale I work from visual cue sheets such as these ones. For these I’ve taking the trouble, not only to find the clearest, most authentic looking and most general models for the proportions and details of the human figure but I’ve also adjusted them all in size to fit the 1:25 scale. It doesn’t mean that every bit of visual reference I have needs to be in scale as long as I’ve got this basis.

female figure reference sheet

For these I’ve looked at various sources .. anatomy books for artists, figure reference websites, medical books .. but the visual references I’ve found most helpful have come from reliable digital artists such as www.selwy.com One can usually tell at a glance whether the artist really understands figures, and the neutral grey or brown surface of a digital sculpt is much easier to read than even the best real-figure photos.

male figure reference sheet

Before one can begin modelling though, an armature is needed. As explained above the armature supports the material but it should also serve as a modelling guide. In my post from March 2013 Modelling small-scale figures I provide a step-by-step account of making the simple armature out of twisted garden wire below.

1:25 scale twisted wire armature

The template which is useful as a size guide during the process is also included in the post. The twisted surface of the wire has an added usefulness in that it gives more ‘tooth’ for the clay to attach itself to.

making wire armature

In my opinion it’s much easier to model a figure at this scale when it’s ‘spreadeagle’ i.e. laid out flat like a five-pointed star, keeping the joint areas free almost until the last. This way it’s easier to portion out and balance body and limb masses, getting a symmetry first. Super Sculpey lends itself in particular to this because very small amounts can be applied first of all just to put some mass on the skeleton, and these can be quickly fixed with the hot-air gun before putting another layer on top. It doesn’t matter how many times the same portion of figure is subjected to the hot-air gun for successive layers as long as it’s not too close (i.e. not nearer than about 5cm) or dwelling too long on one point. Either the figure or the heat gun needs to be kept moving .. but slowly, not agitated.

building up the form

Milliput is the next best alternative material to use, and some might prefer it. I’ve used it on part of the figure above right and for the whole of the middle stage below. Milliput is a 2-part epoxy putty, and the parts need to be mixed in equal amounts before use. After thorough mixing one has between 1-1.5 hours to work with it before it becomes too tough to model. An advantage over Sculpey is that it’s much stronger, especially when making very slender forms and it’s much stickier. But for this reason I don’t like it as much as it sticks to the fingers and makes detail modelling sometimes difficult. It has much more ‘push back’ than Sculpey, especially so after just half an hour. It also makes the process of building up in stages quite a lengthy one because a few hours are needed before it’s safe to model the next layer.

stages of modelling

Modelling tools

For modelling figures at this scale the question of tools is hardly important .. in fact I often just use a cocktail stick and a Starbucks coffee stirrer! Basically it’s enough just to have something finely pointed and something flattish.

modelling in Sculpey

But if you find that you are doing a fair amount in the way of modelling, and larger things, here is a selection of the most useful bought tools. The four on the left are standard ones for clay modelling and one can get them in plastic or wood. In the centre are two made from walnut strip wood and to the right of these is an embossing tool. This is useful because it has two rounded points of different gauge. The metal dental modelling tool to the right of it is an example of a range of fine-modelling tools one can pick up quite cheaply (even in £shops sometimes). To make modelling easier it can be quite important to have at least one of the ‘loop’ tools shown next to it. These make it possible to remove material rather than just displacing it.

modelling tools selection

But just as much can be achieved using tools which are not meant for modelling, especially when it comes to surfacing effects. Below is the fire part for the fireplace mentioned earlier, modelled in Super Sculpey. A plastic bristle brush and a hogshair painting brush were perfect for giving the burnt wood and coals a suitable surface texture.

texturing Sculpey

Other useful texturing tools can be made either from natural forms such as this portion of nectarine stone or modelled and baked in Sculpey itself. The form to the right, which was designed to imprint a tree-bark pattern was modelled on a cutting-knife blade so that it could be fitted into the handle.

special texturing tools

Soft furniture

Rather than modelling the form of an armchair or a sofa out of clay .. this is possible, especially for broken down old things which are any shape except ‘streamlined’,  but they can end up rather heavy .. I use soft sheet foam to make them. Take this old leather Chesterfield as an example of perhaps the most ambitious, alongside something simpler. Kapa-line foamboard has a polyurethane foam inside which is quite dense and fine compared to the polystyrene foam in regular foamboard and the covering paper can be quite easily peeled away without damaging the foam surface. The foam can therefore be used as a versatile sheet material in its own right.

soft funiture using sheet foam

peeling paper from Kapa-line foamboard

Unfortunately I don’t have ‘making of’ photos for these ones, but the process is simply one of cutting the constituent pieces (seat, back and arm shapes) as flat foam cut-out shapes first, then shaping parts of them either before or after they’re all put together. To give a better idea here is the drawing I use as a scale guide for making the small armchair

armchair drawing

Both pieces of furniture were made entirely out of foam except for the legs. Apart from the advantage that Kapa-line foam sands easily and smoothly, it bonds very well with superglue and because of its porous surface accepts any type of paint very well .. including even ink or watercolour! If painted with these or very thin acrylic the surface will look matt, even velvety, with a slight tooth to it like upholstery fabric. But it’s easy to make it smoother, as I’ve done with the leather Chesterfield, by giving it more than one basecoat of acrylic and finishing off with some liquid shoe polish.

styrene chairs

Here again are the chairs made from styrene strip plastic from the previous article on  Fine construction. The chair cushions are Kapa-line foam and I’ve incised very slight lines with a pencil.

styrene chairs painted

Below are foam cut-outs glued to Pvc furniture pieces ready to be sanded down into more rounded upholstery shapes (it’s easier to sand them after they’re fixed down).

using foam for upholstery

For the characteristic ‘quilting’ effect on the Chesterfield, more properly referred to as buttoning I think, I just marked out the pattern before gluing the pieces together and made the indentations by pressing in the corner of a small metal ruler. For the larger- scale pieces below I marked out the pattern, carved into it partly with a scalpel and rounded with a sanding board.

chair cushion buttoning_1

chair cushion buttoning_2

If the surface is coated with thinned Pva glue tissue paper or even soft kitchen roll can be laid on top and pushed into the pattern for more of a fabric effect.

chair cushion buttoning_3

Making curved shapes in styrofoam

I normally use the most common blue form of styrofoam which comes in sheets 2.5cm thick (although thicker sheets can also be found). There are also other types of styrofoam, differentiated by colour. The pink one here is finer and the green one is coarser.

types of styrofoam

I’ve chosen one of the simplest examples first to underline the basic principle of using template cut-outs to control the shaping of the foam. This is just a little step up from the previous example of the fish shape, and it’s much the same as the example of the bath shape, but I think it will help to make the more involved example of the ‘dome’ shape which follows a little clearer.

This sequence is taken from another article Shaping styrofoam in the Methods section. In it I describe the making of simple ‘half-column’ shapes as part of a composite structure, and below is one of the end results.

finished half-column

The first step in making this was to cut a piece of Pvc representing the base dimensions of the half-column (I use Pvc out of habit but cardboard can also be used as long as it’s more resilient than the styrofoam when it’s sanded). I’ve fixed the base templates firmly to the foam with double-sided tape, but they can be easily detached. Next I sanded down to the template using the right-angle sanding block shown above.

small blocks

After this I attached a Pvc semicircle either end, again with double-sided tape. Most of the part that needs to go can be sliced down with a knife if one’s careful, but then it’s straightforward using the sanding block to sand down to the curve, provided it’s longer than the piece itself so that it’s ‘stopped’ by the two semicircles.

setup for sanding curved surface

The principle behind making a regular dome in foam is similar in that it involves setting up template shapes, but this time they remain inside the form rather than attached temporarily outside. The method is suitable for any number of form variations. The faint lines of the plastic inserts are just about noticeable under the surface of the finished dome below.

dome shape

The following photo sequence shows a form with a slight variation on the regular dome shape but will serve to illustrate. The first step is to cut the Pvc shapes which will provide the ‘control edges’ or limits of the form. As I’ve said, these parts will stay within the form.

making a dome shape_1

This particular shape needed to be more ‘pill’ like i.e. a little longer than a sphere, so I had to make a flat section in the middle first, shown below. For this I used some layers of Kapa-line foam sandwiched between the two plastic templates (made in much the same way as the bath shape earlier on except that the two template shapes are the same).

centrepiece of dome shape

Each quadrant of the form is then built up in layers of styrofoam, fixed down with double-sided tape.

making a dome shape_3

I’d advise building in layers rather than a thicker block because a Pvc template can be included on the top of each layer, to further control the shaping as shown below. Here I’ve started to remove the excess with a coarse wood file, judging by eye. But I made a

making a dome shape_4

couple of curved sanders (shown in the last photo), to the same curve as the principle semicircle, in order to sand the foam down to the template ‘stops’ smoothly. As I said at the beginning, shaping certainly needs to be thought about beforehand and thoroughly planned. The thinking may be involved but the doing of it is relatively easy, and once

making a dome shape_5

one’s practised a little it opens up many form-making possibilities.

making a dome shape_6

Perfect ‘bowl’ or concave shapes are much easier, again making use of the fact that a thin strip of coarse sandpaper suffices to sand through styrofoam. The photo below is also taken from the article Shaping styrofoam in the Methods section, and shows the shape near completion. I first inscribed the size of the circle needed as a guide while sanding. I made the sanding tool to the same diameter, with a c.6mm strip of coarse black sandpaper attached. When the tool is pressed against the foam and revolved it will make a rough depression at first but this will get smoother as it continues. For more on this and how to make a round-topped alcove shape as an extension of this method see the article mentioned.

sanding a smooth concave

Liquid modelling

Again this is my term of convenience for the technique of ‘piping’ a liquid material onto a surface, as one might do when decorating a cake, to create the effect of relief decoration without the effort that more conventional modelling or carving would involve.

relief decoration

Here I am using a relief medium I have prepared myself .. Polycell ‘Fine Surface’ Polyfilla .. with a little water added to make it just a little more liquid. It should be mixed as-and-when needed because the consistency is perfect for piping evenly when fresh but after a while (i.e. after a few days) it starts to become a little lumpy.

relief decoration_2

The main trick is getting it into a suitable, squeezable, small plastic bottle with a fine nozzle. It isn’t difficult to find these. The one above was from a £shop and contained glitter-glue and so were the pen-like ones below. I’ve had to mix the polyfilla thoroughly with a little water first in a small container, then fill a plastic syringe and use this to transfer it into the bottles. If not applied too thickly the polyfilla takes 1-2 hours on average to dry. I prefer using this polyfilla mix because it shrinks the least of the various materials I’ve tried. It also dries the quickest and if deeper relief is needed a second layer can be applied, as I’ve done with the portion of picture frame in the top photo.

mixing up polyfilla

Idenden Brush-coat, which is a texturing compound commonly used in the theatre here, also works very well. An advantage of this is that it can be used as it comes without dilution and will consequently keep its consistency much longer. But unless you have access to a friendly scenic workshop, Idenden will be expensive because it only comes in 10litre buckets.

Other possibilities are offered by various fabric relief paints or glass-painting relief outliner shown below. The Pebeo ‘Touch’ relief paints are more like a liquid plastic, so one can ‘draw’ with them very evenly, and there are various colours including good metallic such as gold or pewter. It is a little disappointing that they shrink quite significantly, so they don’t manage something like the picture frame, but are perfect for the suggestion of a relief surface. The Pebeo ‘Cerne Relief’ glass-painting outliner is a thicker medium and the small tube comes with a much finer nozzle, so very detailed effects are possible.

relief modelling media

Working with wire mesh

I usually categorise my use of metal mesh as a method of shaping .. if not modelling even, because it’s also ‘pushing a soft material around’ in a way. I work mainly with ‘welded wire mesh’ which is welded firmly at each intersection, so that different forms can be produced according to where the mesh is snipped and how the free pieces are bent. It’s ideal for small tree forms, for example.

wire mesh trees

snipping wire mesh

I’m sure many other structures can be made in this way .. but that’s something for another day ..

‘Model-making Basics’ – main construction

Please note before you start reading this older post that I have long since included a version in my Methods pages, under Making realistic models, which can be accessed above. That version may have been updated or expanded since.

I will be teaching five 3-hour sessions in model-making for the theatre design students at RADA (Royal Academy of Dramatic Art) in London throughout this month. The fact that I’m given five, short time-slots is convenient, I think, because it fits in with the way I usually divide up model-making, at least in practical terms, into five areas; .. main construction, fine construction, modelling and shaping, creating surfaces and painting. I’ve delivered these sessions many times before but I’m always driven to ‘re-evaluate’, so this time I’m using that as an opportunity to write up my preparation for those sessions here. The next five posts are therefore geared towards the specialities of making theatre set design models, but many of the points apply in general terms to work in other disciplines

I find the last four areas relatively easy to advise on, perhaps because they can be more easily illustrated, but I’ve always had some difficulty sorting out what I should say for the first. It’s not that there aren’t a whole many detailed practical tips to give .. the ‘hands-on’ part of construction is a methodical, step-by-step process which can be easily broken down into handy points .. but I think the difficulty has come from my suspicion that constructional ability in this case may rely more on ‘ways of thinking’ than ways of doing and that these may be harder to help with!

Model-making is a very practical subject, in that it involves the handling of materials to produce a physical outcome. It could be taught purely from that practical standpoint .. focusing on the materials and tools needed, and the methods or techniques employed to make specific things. But model-making is also part of the act of designing .. a means of assisting the designer’s ability to pre-visualize. It’s not just the necessary visual embodiment of ‘worked out’ intentions (necessary because others have to see them) .. it’s a major part of that process of ‘working out’! Because of this the ‘materials and tools’ for effective model-making are not just those which can be conveniently placed on the table; they include the more fundamental attitudes, areas of acquired knowledge, and ways of thinking/or seeing/or organizing which underly the whole process of work.

For this reason I’ve arranged these notes .. going from the general to the specific .. firstly under the heading ‘General approach’, which is more about ways of thinking; followed by ‘Practical guidance’ which turns more towards ways of doing; ending with more specific ‘Working examples’ which aim to illustrate how these ways of thinking and ways of doing combine ‘at the worktable level’.

What do I mean by ‘main construction’?

I mean the ‘big things’, starting for example with the theatre model-box and then the main structures of the set .. the ‘principle architecture’ in other words. This includes elements such as walls, platforms, seating banks and staircases, but also curved set elements, raked floors and open frameworks such as scaffolding. Although many are quite simple shapes, just to look at them, it is not often obvious how to make them .. or perhaps more correctly, how to start on them.

GENERAL APPROACH

Leading with the head

It’s a favourite catch-thought of mine that success in model-making lies ‘more with the head than the hands’, meaning that it rests upon thorough planning or ‘thinking through’; that nothing reliable can be achieved without researching the right information; that problems are solved by a mixture of focused and divergent thinking; that one can only be as good as the materials one knows about. Against this though, one has to weigh up the fact that a great deal can only be learned by doing; that there’s a limit to what can be visualized beforehand; that being ‘hands on’ with materials will suggest and inspire different and unforeseen ideas!

The ability to ‘see’ ahead .. to actually ‘work’ in a very practical and realistic way, but ‘in one’s mind’ .. is the first and most important tool that the designer reaches for! Everyone has it, because otherwise none of us would be able to rehearse a difficult conversation, write a shopping list or plan a journey! Undoubtedly some would seem to be ‘better’ at it than others .. but it’s more a case of some being better at aspects of it. Some can let their imagination roam further than others; some may not wander so far but can ‘see’ what they have in more detail; some are good at shutting out what they don’t want or need to see in order to focus. My point here is that it’s important to recognise which of these you are, acknowledge your strengths and question whether you can improve. Although the second point on this list is the accepted way of dealing with any deficiency, or safeguarding against being misled, there is still a great deal that we either don’t have time to test or don’t realize there’s a need to.

Probably model-making taxes one’s ability to plan ahead in this way more than most other things I can think of, because there are so many variables! The materials chosen need to be reasonably durable (though not to last forever); affordable; obtainable when needed; ideally within one’s ‘comfort zone’ in terms of familiarity or technical ability; but perhaps not so familiar or comfortable that they engender predictable results i.e. better if they’re a little challenging or even inspiring!. Similarly one’s methods of working with them need to accord with the above; they must be affordable timewise; they must be flexible enough to give freedom to the development of the design; they must keep the sense of discovery alive! The builder’s mantra ‘strongest, neatest, quickest and cheapest’ already gives many things to juggle with, but ideally ‘most creative’ should also be added.

Can one’s ability to visualize be strengthened? Is it possible to ‘see’ or to foresee more? Absolutely! .. by feeding the mind with better information for a start! The quality of what comes out depends on the quality of what goes in. But it doesn’t start with ‘quality’ necessarily .. it starts with quantity. The more we’ve seen in our lives, whatever the sources, the more we’ll be able to visualize. Then, the move towards ‘quality’ begins simply with questioning; the act of interrogating what it is we’re seeing, where it might come from, how good those sources are and what visual assumptions we might have been making.

For example, it’s hard to visualize the concept of a ‘circus’ on stage (i.e. to shape it in our minds in terms of what general actions are going on, what sort of background the performers are seen against and what they look like) if we’ve never seen one before. And yet we are all required to do that in an instant, just to establish where we are even very vaguely, as we read a novel or a play text. I’m willing to bet that although probably very few people nowadays have actually been to a circus, we will all have some kind of scene-setting image which is pieced together from various sources .. storybook images seen as a child, related scenes from other plays or performances we might have been to, scenes from films or television. When we are reading a novel for enjoyment we just need to set the scene for ourselves vaguely, without even being really conscious of it, just to get through the story and unless the writer refines or directs our vision with a more specific description, that image of ours has to serve. It probably doesn’t matter how incomplete that image is or how silly the sources are, as long as the writer is doing their job properly in directing our attention to what’s important. Now, compare that to reading a play text with the view to designing it. Ideally, our first experience of the material should be exactly the same! Ideally our initial reading should be just as free, ‘unselfconscious’ or unbiased .. initially that is. It’s a subject for another discussion whether that’s at all possible for us of course, but then afterwards .. our reading has to become very selfconscious, biased and critical. We do then have to examine that scene-setting image we’ve formed of the circus and subject it to questioning .. what are we really seeing; how complete is it; where have those visual impressions come from; which of those are coming from the text; what more do we need (whether in terms of quantity or quality) to start ‘building’ that image for real?

The process is similar in many respects when planning the making of something. We may be able to visualize the whole process in some detail, if we’ve done it or something very similar before. Again, the more we’ve made the more we’ll be able to realistically visualize making. If not, we can still piece together a ‘provisional’ visualization from general things we know about materials and ways of making, mixed with some more specific ‘snap-shots’ of things we’ve experienced which could be related. So for example we may have the general ‘circus’ image, but then we have to start ‘making it real’ by questioning .. can we trust what we think we know; what bits don’t we know, and which can only be found by starting or experimenting; what more do we need to start that?

Sketch model-making

Sketch model-making .. in other words making quick, rough mock-ups to get a better idea of how something is truthfully likely to look .. is a standard and, I believe, indispensable practice in theatre design! One could say that the less you’re confident in your powers of visualization the more you should do this. But because the sketch model has the other function, more a communicative than a freely exploratory one, when working with the director for example, its uses can get a bit confused. You, as the designer, may view the sketch model properly as the closest approximation of ‘something yet to be properly defined’, whereas it is difficult for the director to look at it as ‘blurred’ in the same way you do. You have to be prepared for the sketch model being judged on exact face value and you need to be clear about what you consider purposely vague and what isn’t. The other thing is, ‘sketch’ or ‘rough’ in this context should be understood more in terms of ‘quickly made’ or ‘not precious’ rather than necessarily ‘inexact’. Scale for example needs to be as exact as you can manage, even in a sketch model, otherwise nothing specific can be learnt from it.

Defining with ‘measured’ drawing

After basic structures have been tested in the sketch model and are ‘approved’ they often need to be further refined in terms of exact dimensions or, more understandably, the method of making them, and it is better to work these out on paper first. An example of the first might be a flight of steps which it might be acceptable to generalise roughly in the sketch model but which need to be checked on paper (see ‘Working Examples’ below). An example of the second is a raked floor, which could be improvised in the sketch model just by propping a piece of card over an object. To make the rake properly the height at the highest point needs to be measured together with the length along the floor from the lowest point and drawn up on paper (as a long, thin triangle) to get the gradient. The gradient (the slope) is the amount the rake rises compared to its length, so for example a gradient of 1:8 (as it’s normally written) rises one unit of measurement for every 8 of those units along. The best way to make a stable rake is to cut a number of those triangles and glue them at regular intervals to the underside of a sheet.

Knowing when the planning should pause

Models can easily go too far into unnecessary or gratuitous detail and it is the same with planning. It’s not entirely true that ‘There is no such thing as too much planning’. There are dangers, both in terms of scrutinising the present in too much detail or trying to look too far into the distance.

For example, some people take refuge in planning for much longer than necessary because the part that follows either involves more effort or it involves more ‘unprotected’ engagement with the unknown .. exactly what one should be doing in fact! Some people are such good visualizers (those who can see quite far ahead in detail, ‘rehearsing’ doing things in their minds and even mentally picturing the outcomes) that they’ve worked everything out from start to finish, leaving themselves seemingly nothing more to discover. Planning is supposed to be logical and rational, but it can also become paradoxically unrealistic! It often delivers the ‘ideal’, based on a string of assumptions
about what one thinks one can achieve and when, setting up an end-goal that is
often as far removed from reality as it can get! That kind of planning usually only
results in frustration and disappointment!

Instead, the kind of planning I’m advocating is ‘episodic’ rather than ‘epic’! Make sure that you’re always planning enough in hard practical terms (i.e. that you have the basic materials, tools and information) to get you through the next few practical steps. Of course it’s important to have a notion of the bigger picture, why it is you’re doing things and where it could all lead, but don’t allow this picture to overwhelm the present or close your mind to the changes that each step could generate. It may not work for everybody, but I seriously believe from my own experience that if you keep the conscious mind reasonably focused on the practical/immediate, the subconscious mind is left to work calmly on the ‘bigger ideas’ and deliver them when needed.

Knowledge of materials and where to get them

As I’ve said, as a maker you’ll only be as good as the materials you know about! But, as with everything seemingly, there are points and counterpoints .. to accommodate the innate differences in people and their situations. I still hold that the key to solving most model-making challenges is to at least know of the existence of a wide variety of material options. Thinking purely of my own experience, I can’t imagine what quagmire I’d still be in now if I hadn’t found out about and played around with Kapa-line foamboard or foamed Pvc sheet! It’s not just that I am enabled to do things with these materials which would either be impossible or impractical with others. It actually needs far less technical expertise to get results with them than with the others, and they suggest new ways of working that I wouldn’t otherwise have thought of. I’ve got to the stage where I can comfortably make almost anything imaginable from either foamed Pvc, Kapa-line foamboard, blue Styrofoam, strip styrene, obeche wood sheet and Polycell ‘Fine Surface’ polyfilla. This is my point though .. I’ve made my selection from exploring many! It pays to be divergent and explore all sorts of different options but after a while it also pays to converge upon a chosen few that one ‘knows’ particularly well.

Learning about new materials isn’t difficult or particularly time-consuming! You can dip into the articles here, or browse through the ‘Lexicon’ for example .. or countless other websites .. not to mention books! But probably an even better, more memorable starting point is just to go and see what an outlet like the 4D modelshop in London has to offer.

4D modelshop London

Just spending the time to look systematically at the range they have, including many options for ‘preformed’ structures as above, can be quite an education in itself and it means much more because you are actually seeing and handling things.

Thinking in terms of ‘base layers’ and ‘add ons’

Structures, particularly architectural ones, often have a defining shape which I call the ‘base layer’ meaning the most significant outline, although this may not be located literally at its base. This is usually the place to start when sorting out how to construct the structure. For example the proscenium wall i.e. the front of this theatre model-box is a relatively simple structure which can be put together in layers.

theatre model-box

That is, the ‘base layer’ is a cut-out following the exact dimensions of the proscenium window with a thick strip built upon the front of it and another strip fixed to the back of it to complete the proscenium arch depth. It needn’t be more complicated than this and if you don’t like the visible join (indicated by the shaded strip on the drawing below) this can be faced with black paper. Most wall structures turn out to be just a base layer with additions one side or the other (speaking in terms of making them in a model! They may be built differently in reality).

model-box pros detail

I made the wall pieces below to illustrate how seemingly involved wall surfaces can just be a collection of boxes on a base layer. For example with the simpler one on the right it’s easier to cut a main wall piece as a continuous strip and stick the protruding part over it as a box if the construction isn’t going to be seen. It’s stronger anyway, it’s actually quicker, and the extra material hardly makes a difference in cost. It also means that, if need be, individual sections can be more easily kept separate for painting.

wall add-ons

Keeping built elements as separate as possible until they’re textured or painted is quite an important general consideration in model-making .. one of the important points on the ‘planning ahead’ checklist. How separate, or rather where exactly to draw the line in terms of having a lot of separate bits, is something one can only learn by doing. Similarly, the way one chooses to create a surface may add a lot to the thickness, so it also needs to be thought about at an early stage .. unfortunately far too early in many respects!

If you’re not good with measurements .. do something about it!

My theory is that it’s the creatively divergent thinkers that make the best theatre designers, and quite a few of those that I know or have taught have difficulty with the ‘number processing’ aspects of the work (although I’m sure it doesn’t follow that if you’re good with numbers you’re neither creatively divergent nor a good theatre designer!). I also suspect that this difficulty arises, not because those people are unable to think logically or systematically enough or that they’re not mentally organized, but rather it’s something to do with not being able to retain information that has almost no emotional or visual reference.

Many people get by without undue stress, but if you feel you are not or if this is damaging your work, you have to take positive, compensatory action because otherwise it will always stand between you and your confidence! First of all you need to focus on what exactly it is that you find difficult, and it could be just one, a few or a number of things. Is it that you find it difficult to retain numbers in your head long enough to work with them or that you can’t ‘see’ them in your head sufficiently as quantities for adding together? Or might it partly be the way measurements are written, for example?

I know for a fact that my problems with numbers are because I don’t retain them, they’re not ‘memorable’ in my head for more than an instant if they remain as just numbers. I’ve found some ways which have helped .. I write numbers down fairly bold on pieces of paper so that there’s also the sense of the movement I’m making with the pen; I say the numbers out loud and often retain the sound of my voice saying them etc. I think I’ve also assigned some kind of ‘character’ to each of the 9 single digits, in a very vague way, to help with both differentiating and remembering them. I always try to transfer a group of measurements I might need (ideally no more at one time than can be fitted with large writing on a post-it) to lie directly in my field of vision while working, as below. This has helped a lot, because at times it’s felt as if they can disappear somewhere within the 2metre journey from drawing-board to worktable!

keeping track of measurements

Cutting needs to be learned and practised!

In my experience a standard surgical-type scalpel (i.e. Swann-Morton No.3 handle, on the left below) is by far the best knife to use for model-making work. The best blade to use with it is the ’10A’. It’s the most general-purpose but also the most precise. The scalpel in the centre has been fitted with a rubber cover, which is much more comfortable and makes the knife much easier to control. Unfortunately I have only seen these on sale in Sweden! The knife on the far right is not a ‘scalpel’, but is another very common type (especially with hobby or ‘craft’ shops) and is not as good in a number of respects. In the first place the flat orientation of the scalpel helps with controlling it, compared to the round barrel. Secondly the scalpel blade is more firmly supported and this support extends further towards the fine tip, as you can see. The blade in the other knife will tend to flex and wobble too much, especially when pressing hard. Lastly the blades for this knife are more cheaply made, not as sharp and .. I think .. not as easy to find. Often the blades are a little thicker than scalpel blades and this can make a noticeable difference when cutting because they produce more friction! These knives are not necessarily cheaper than scalpels (at least they shouldn’t be if the shop prices fairly) and in any case .. why should one think about saving just £1 or so on a tool which will last and which one’s using all the time?

fine cutting knives

I’m sure I must have said many times that there’s a whole little book to be written just on cutting with the scalpel, hence the devotion of space to it here! At the very least, anyone not practised in cutting needs to consider it a subject in itself which needs to be rehearsed, explored and ‘made peace with’ as far as possible before being able to do anything else. Scale model-making of this kind is so dependent on being able to cut a straight line in the right place. It sounds so simple .. but it’s not! It can’t just be taken for granted that everyone will be able to do this with just a little practise and often people who could otherwise become excellent makers are put off the whole idea of model-making just because this one aspect is never really ‘conquered’. Here are a few guidelines:

If you’re using a material for the first time you should take a while just to get a sense of how it cuts i.e. starting with how steady the metal ruler will lie on it, how resilient or giving the surface is to the initial pass with the blade, how many passes are needed to cut through cleanly without excessive pressure. If you don’t feel confident that the ruler will stay where you’ve put it, you either need a better ruler or you need to do something so that it will grip better. Flat steel rulers will certainly need a strip of masking tape on the back at the very least but sometimes this isn’t enough so pieces of double-sided tape could be added provided they won’t damage the material. If left on permanently they will lose their tack over time but will still improve the ruler’s grip.

You should also rehearse what it feels like to run the tip of the blade steadily along the metal edge, without necessarily cutting at all. It should feel locked there, able to run freely along but not to depart from the edge. The scalpel blade is slightly flexible and it should be pressed hard enough into the metal edge so that it flexes just a little.

There are no special prizes for being able to cut through in one go! The first pass with the knife should simply be to establish a guiding ‘scratch-line’ which only has to be deep enough to be found again with the tip of the blade. One’s focus at this stage should be more on the edge of the ruler than the material to be cut. Pressure comes afterwards, once one’s established this line and it shouldn’t matter how many passes it takes to cut through. If you’re having to press so hard to get through the material that you can’t control the straightness of the cut anymore it means one or more of the following:- the material is too tough or thick to be cut with a scalpel and you will have to try with a Stanley knife or failing that a saw; you can turn the sheet over and try cutting in exactly the same place on the other side (when cutting thick materials it’s the friction on the blade that becomes the problem and starting ‘new’ from the other side often works); or you need to build up some more strength in your hand and arm through practise.

If, for whatever reason, the ruler moves while cutting, don’t try repositioning it by eye. Put the tip of the scalpel in the beginning of the line you’ve started and slide the ruler up against it. Holding onto that position put the tip of the scalpel in the end of the line and move that end of the ruler against it. You might need to adjust, beginning and end, a couple of times.

It’s worth asking yourself consciously whether you’re working under the best conditions or whether they can be very simply improved? For example .. is the cutting matt flat and smooth or is it more like a Jackson Pollock? Can much of this be scraped off? Is the cutting matt really flat on the table or are there small bits of scrap under it? Have you really got enough proper light to work by? .. in particular, can you see your marked line clearly enough or is the edge of the ruler casting a shadow over it?

Usually with thin materials (i.e. up to 1mm) the angle of the cut edge, in other words whether it’s at a right-angle to its surface or not, doesn’t matter so much. Generally, if one’s holding the scalpel normally it will be fine. But if over 1mm thick it can matter, especially if the edge is to be glued on something else at a right-angle. If using foamed Pvc or wood it would be normal practice to straighten the cut edge using a sanding block and this will even work with foamboard or some types of cardboard. Even so it’s best if one gets used to holding the scalpel upright in the first place. It’s much easier to maintain the knife upright if you can actually see the angle while cutting, i.e. by cutting the line in the direction straight ahead of you rather than side to side. Especially when cutting longer lines it’s usually better to stand up for this so that you can reach over the work properly and use your own body as a ‘measure of uprightness’.

Changing the scalpel blade (i.e. when it gets blunt) should be the easiest thing in the world (if the world were fair) but unfortunately it can be a bit of a nightmare with a new scalpel handle, because the fixing is often too tight at first, making it hard to slide the blade either off or on without fear of injury. The only way to solve this (until it wears down a little with use!) is either to use pliers to get the blade off and on, or to file into the blade channels a little. Below is not intended as a solution to this, but it does help to know that blunted blades needn’t always be replaced. They can quite easily be sharpened on a piece of ‘wet and dry’ or Emery paper (usually best 600-800 grit) by stroking the blade firmly at a shallow angle, a few times each side. It’s usually only the very tip of the blade that gets blunt so it’s best to focus on sharpening just this small part, flexing it a little into the paper.

sharpening a scalpel

PRACTICAL GUIDANCE

Keeping track of what is being glued to where

A common exercise for beginners is making a complete 6-sided cube using flat card. All sides and all edges of a cube need to be perfectly equal. Does this mean that the first task is to cut out six perfectly identical squares? If your answer was ‘No, of course not! Some need to be a little smaller’ you’re ok and on your way, but if it was ‘Yes’ and you really can’t see why this could be wrong you’re going to be challenged!

The fact is that when pieces of card are glued ‘edge to face’ for things like this the thickness of card becomes part of the measurement, so some pieces of card need to be cut shorter to allow for this. Working out the measurements needed and best method of assembly for a simple cube can be challenging enough, so one gets an idea of the forethought involved in making more complicated constructions. The only way to keep a mental grip on this is by drawing up and noting clearly on the drawing what goes on where .. or at least what you plan to do at that stage. Consider the drawing a master-plan .. take time over it, treat it with respect, put it up on the wall if you can, update it immediately if you make changes. Don’t be afraid of making it multi-coloured if that helps .. this is not prissy!

Labelling cut pieces

It’s an annoyance I used to experience countless times! .. looking at a mass of cut pieces on the cutting mat having lost track of which of them were ‘pieces’ and which were off-cuts. There was often one that I never managed to find again, probably because I’d mistakenly cut it up to make something else. These pieces need to be labelled as soon as cut, including the record of where the top or bottom is etc. You can use bright post-its as below; these are cheerful and important looking, but they could come off. Another way is writing on a piece of masking tape.

labelling pieces

Getting and ‘keeping’ right-angles

In the first place, never assume that a sheet of card (or especially an off-cut of card) has perfect right-angles even if it’s straight out of the shop. These need to be checked first. Laying a set-square over the corner is often the way that people check but because set-squares are usually transparent one has to strain the eyes a bit to see this and it may not be sufficiently accurate. Using a try square is a clearer way of checking, not least because one only has to look at one edge rather than two.

using a try square

‘Setting up’ for gluing

Almost all glues are meant to be used as sparingly as possible, because bonds between things are always stronger the tighter they can be pressed together, regardless of how thick or ‘gap-filling’ the glue may seem.

Whichever materials are being used and whatever the properties of the glue (i.e. whether fast or slow), gluing needs to be prepared for. If the glue is slow-setting such as Pva wood glue, pieces need to be held (ideally fairly tightly) in position until the glue ‘grabs’ sufficiently. With a good quality wood-glue and normally-absorbent card this will not be long, perhaps just a number of seconds. The glue takes longer to set completely but the piece will stay together in the meantime and can be moved .. it just shouldn’t be put under any pressure for a while.

If on the other hand a fast-setting glue such as superglue is used this will not offer the same margin for repositioning so the ‘set-up’ is important in this case as a means of making sure that pieces can be positioned ‘right first time’. I use metal blocks (steel offcuts) to glue pieces against. For example, below I placed the edge of the base piece up against the block, put some glue on the edge of the upright piece and just had to slide it down the block surface into position. This ensured that the upright piece was glued in the right position along the edge of the base piece. Metal blocks like these can be bought from metal retailers such as www.metalmaniauk.com for just a few pounds (see Lexicon entry ‘metal construction blocks’).

using a right-angle block

Another way of setting things up, involving a different technique of gluing, is offered by the fact that thin liquids will be drawn into tight gaps (what’s known as capillary action). This means that difficult-to-glue pieces such as the curving sheet below can be set up in the correct position and the glue is introduced along the joint afterwards. Here a thin plastic solvent is being used to glue styrene plastic, but thin superglue can also be used and this can also work with card.

gluing from outside

The scaffolding construction below needed a bit more preparation to set up the pieces for gluing.

scaffolding model

The scaffolding was made from 2mm acrylic rod, superglued together and then painted to look like metal. The individual pieces of rod needed to be taped onto card to hold them in position while glue was introduced into the joints.

scaffolding before painting

Because the structure was three-dimensional I had to make the special foamboard construction below to glue it on. I needed to be careful not to apply too much superglue to the joints otherwise it would have glued the scaffolding to the card. After gluing I just needed to remove the pieces of masking tape and slide the scaffolding construction off the supporting form. Specially made supporting forms like this are known as ‘construction jigs’.

gluing jig for scaffolding

Below, some of the side poles needed to be glued afterwards and these also needed small temporary supports to assist gluing them in the right place.

detail of jig for scaffolding

Faking surfaces

This is not a sudden jump forward to talking about how to create surfaces although, as I’ve mentioned, one does have to include certain decisions about them from the beginning especially if they’ll add to the thickness of structures. What I mean here is that if for example I need to make a structure that looks like real wood it often makes sense to use real wood (if the scale looks right), but it doesn’t make sense for me to construct in wood because I’m not familiar with working with it in a constructional way. I have confidence in being able to construct whatever I want in Pvc plastic, so the best answer for me is to construct in plastic and thinly clad with wood. This has many advantages; it cuts down on cost, it gives more control over the appearance (type of wood, staining, direction of grain), and it doesn’t require special tools or woodworking methods.

cladding in wood

Dealing with curves

By this I mean two different tasks .. firstly being able to cut circles or regular curves in a flat sheet, and secondly building structures such as curved walls. As for the first, I could just say that, really, cutting out a nice, smooth circle which you have drawn with a compass is just a matter of practise! One really does have to have a feeling of ‘steady flow’ to do it properly and it usually doesn’t work if you’re agitated. You need the practise to get an idea of how your hand behaves in that situation; how much you can rest it on the material but still slide it along smoothly; whether it’s easier holding the blade upright or more oblique; whether it goes more smoothly using a sharp blade or a slightly blunted one; whether you need to be sitting down or standing up over it. All of these, and more, are considerations and only you can discover what works best for you.

But I can suggest other things that are likely to help in any case, and these are: if you can, find a lead for your compass that’s slightly harder than the standard supplied i.e. ‘H’ rather than ‘HB’ to give a sharper pencil line or, failing that, sharpen the end to a fine point using a nail-file; as with most other cutting, make your first pass just a gentle guiding cut on the surface to be able to move more freely without having to press down too much; if possible use a different, i.e. softer or less fibrous card for these circles than you’ve used for the rest of the model and don’t even attempt to cut circles from the thick, dense, hard recycled type!

But if you’ve tried and tried again, and you’re still not getting anything like a circle, there are other things that could help. There are so-called ‘cutting compasses’ like the one below which usually don’t cost too much. They have a very small blade in place of a pencil lead. I can guarantee that you won’t be able to cut anything like mountboard right through with them (it’s impossible to press down enough while moving round) but you will be able to make a good, precise guiding cut. You will then need to trace this with the scalpel. Another way of making a good guiding mark is if you can rig up your compass with another metal point (in place of the lead). Art or graphics shops often sell spare points.

cutting compass

The photo below illustrates how one would normally approach building any curved structures in the model, whether concave (curving inwards) or convex (curving outwards). If card is being used it needs to be a relatively soft one, such as mountboard, and .. this is important .. not too thin, i.e. 1.5mm mountboard is usually fine. You may think that it’s going to be easier to curve thinner card, but it may not keep its shape well enough. After getting a reasonably good idea of the length of card you need to complete the curve, cut a piece to size but with some extra length (I’ve used ‘foamed Pvc’ plastic below, because I wanted these demonstration samples to last and I prefer foamed Pvc over card anyway). Make repeated and regular-spaced ‘half-cuts’ (i.e. not all the way through) from top to bottom. The closer these lines are to each other the better, and the smoother the curve, but it depends how much patience you think you’re going to have. Ideally each cut should have the same depth (or rather they’re cut with the same pressure) but this is very difficult to regulate. If all goes well the scored card should bend easily and evenly, and the strips act as reinforcement keeping it straight vertically.

making curved walls

Curves almost always need a support behind them to keep them in shape. This can vary according to what you’re prepared to do or the amount of space there is behind, from just bending a piece of wire and attaching it to the back, to the supporting construction I’ve made here.

fixing a curved wall in place

Here I am gluing it into position against the top and bottom support curves in stages, starting by fixing one end firmly, pressing it tight and then introducing thin superglue into the seam from outside (the technique of ‘gluing from outside’ illustrated earlier). I’ve made the curved piece longer than necessary because it’s easier to handle it this way and it’s easy enough to trim the end off once it’s firmly in place. With this method the score lines are always visible, whichever side you’re facing, but the way to eliminate this completely is to cover the curve with another surface of strong paper (or thin plastic), preferably using spraymount to glue it evenly.

There are other sheet materials which can be used for creating curved surfaces without the need for scoring. Thin (i.e. 0.5mm) white styrene sheet is very bendable (available from model shops such as 4D). Also available from 4D is a special form of soft cardboard called ‘Finnboard’. This is made from pure wood pulp and if it is soaked thoroughly in water it can be bent into a curve without creasing. It needs to be kept in that curve while drying though i.e. by securing it around a bottle or similar former.

Finnboard bent into a curve

WORKING EXAMPLES

Steps and staircases

I often use the example of making a unit or run of steps to illustrate many of the issues of ‘main construction’, and in any case the question of making stairs is always coming up. I’ve adapted this account from my book ‘Model-making: Materials and Methods’ but I’ve also extended it to include a method for open steps and a basic approach to making a spiral staircase.

Even with a simple staircase unit it will become clear after a bit of thought that certain things need to be found out before starting .. firstly the standard acceptable proportion (i.e. height and depth) for a step, the height you want your staircase to go to and the distance along that’s going to be needed to get there. See ‘Common sizes of things’ in the ‘Methods‘ section for more on standard step measurements, but let’s say that each step needs to be 200mm high (known as the rise or riser) and 250mm deep (or along, known as the tread). If you want the flight of stairs to reach 4 metres you could use something similar to the ‘counting on fingers’ method for working out what length on the ground this will come to i.e. dividing 200mm into 4 metres to give 20 and multiplying that by 250mm to give 5 metres length. It might have been simpler and perhaps quicker though to think of the step proportion 200:250 (which is the same overall) reduced to 1:1.25 and simply multiply 4 metres by 1.25.

Once the dimensions are sorted, two identical profiles (side views) need to be drawn up and cut out. These will become the sides of a freestanding stair ‘box’. Believe me, it’s best and easiest to make it this way, even if the stair itself is going to be enclosed between other walls. There’s nothing harder than trying to construct something in mid-air! A lot of construction challenges are solved simply by taking the time to rig up a support to glue upon. This can be left if it’s not going to be visible, and if it has to go it can usually be easily cut away afterwards.

Drawing up steps

The best thing to do is to draw up a complete grid (above), composed in this case of 200cm x 250cm rectangles. The try square comes in handy for this, or the card can be taped to a drawing board. The grid helps in keeping lines straight and spacing regular, and the extended lines will help when positioning the ruler to cut against later (it’s hard to keep to parallels when all you’ve got is thumbnail sized lines). Maybe it’s the only way of doing it anyway, it’s just that I’ve seen attempts at steps that appear to be more ‘organically improvised’ shall we say! In the past I often drew up a larger grid so that I could make use of the cut zig-zag for both profile pieces. But I have to say, they rarely matched completely. The following three photos were taken for the book by Astrid Baerndal.

first stage of step construction

After checking for a reasonable match, the profile pieces need to be fixed in a position where they’re upright, the right distance apart, parallel and ‘in sync’. The easiest way to do this is to stick them on a base cut to the proper size. This will add a little extra height though, so to compensate the same needs to be taken off the base of each profile. The right-angle supports glued inside are essential to make sure that the profiles remain properly upright.

adding risers

For the next stage above I’ve used coloured mountboard to make it clearer how I’ve chosen to fill in the steps because there could be a number of ways. Here I cut a strip of card exactly the right width for gluing between the uprights and cut all the riser pieces from it. I then inserted these in the right positions using Pva wood glue to allow for some repositioning. In this case the flat of a small metal ruler was useful for pressing them level.

completed step unit

In this example I’ve finished the unit by cutting another strip of card, this time the full width between the outer edges of the uprights, so that the treads can be cut and applied on top. It only remains to give the steps the required surface, whether that’s concrete, wood or carpet etc. Whatever goes on top needs to be kept reasonably thin, because it will change the dimensions slightly (but this difference will only be noticeable on the top and bottom steps of course because if the steps get an even treatment the proportions of the others will remain unchanged).

Speaking of that, you might have noticed that whereas I was careful before to adjust the height of the two profile pieces to allow for the extra card base, I didn’t say anything about the extra thickness of card which has been added to make the treads. Doesn’t this mean that the steps are slightly .. i.e. 1.5mm .. higher than they should be? In fact they’re not because in making this I fortunately anticipated that and sliced a total of 3mm off the bottoms of the profiles before gluing to the base piece. I left that fact out to make this point .. does it really matter? The answer is .. no, it’s not a major error if levels don’t quite match up in the model but it’s generally better if they do. Pride in getting the model right, i.e. in making it look exactly as you want the real set to be built, should extend to all details. Things like miss-matched joins, warped surfaces, ragged areas or spots of glue are only human, but even these little things can prevent a good model from being fully convincing, rather like tiny errors of continuity in a film which are enough to wake us up from the illusion.

But what if one needs a run of steps which are not boxed in, for example if they’re clear underneath or as part of a metal fire-escape? The general method is fairly similar. For example the first stage is to draw up the necessary grid as before to get the right proportions and spacing.

making an open flight of steps

But then instead of cutting out a profile wall one needs to cut a profile strip, as above.

setting up for gluing

The two of these then need to be temporarily secured to something so that they stay ‘upright, parallel, synced’ etc. Above, I cut a strip of 5mm foamboard to the right width, checked that this was straight, and secured the profiles to it using small strips of double-sided tape. Below this is the strip for the treads waiting to be cut. I’ve used 1mm ‘Palight’ foamed Pvc for this construction, using superglue. After all the treads are glued in place the piece can be easily loosened from the foamboard support.

completed steps

I’m asked a surprising number of times, mainly by theatre or film design students, how to go about making a spiral staircase in a model. Maybe it’s not so surprising because it’s a beautiful form, and is often the only attractive solution within a confined space. But having to build it in model form with at least a semblance of its grace will tax ingenuity and patience to the limit! I’ve been quoting the spiral staircase from the beginning of my teaching, as an example of instances where model-making interferes with design. So often spiral staircases are ditched in favour of something easier to make!

What follows is a very basic ‘schema’ for a generalised look .. it doesn’t answer every detail or for every type but may provide a framework method to build upon or adjust.

spiral staircase plan

The drawing above represents what one has to do first, that is, to draw up a groundplan view to scale, establishing the size of the staircase and the shape of the treads. As for the question of size, and especially if this is a design intended to be built and used, one must take into account the building regulations which, in the case of spiral staircases, advise that treads must be at least 26inches (c. 66cm) in width. The same regulations advise on how deep (horizontally) the treads should be at their middle point and I won’t go into detail here but good advice can be found on sites such as

http://www.accentironwork.com/building%20code.html

This drawing can form the template for cutting out the individual treads later (if copied and tacked on with repositionable spraymount), but it is also essential for working out how many steps will be needed for the height required. For example if the staircase needs to reach an upper level of 3 metres, 14 steps will be required assuming that (as I have done here) that each step rises 200mm and that the last step is to the platform. By starting at the top step (aligned as it will be with the platform edge) and counting the progresssion of steps downwards on this plan you can find out how the spiral ends (or rather how the staircase begins). The direction of entry onto a staircase is something that can’t just be left to chance (it has to be appropriate to the way it’s going to be used)and if it needs changing there are two things that can be done. The penultimate step (i.e. the last tread of the staircase itself, before the step up to the platform) can be extended if there’s a gap and usually it won’t be noticeable. Alternatively (although not so usual) the rise of all the steps can be adjusted, because there’s a reasonable leeway from 15cm minimum to 23cm maximum.

marking up spiral staircase

marking up a spiral staircase

What staircases of this more contemporary type have in common (i.e. those usually made of metal, often with open steps) is a round central pole, as above, and this is the starting point for construction. This needs to be found first, so that its diameter can be entered on the drawing. If you’re fortunate enough to live within reasonable distance of a materials shop such as 4D modelshop in London there is such a range of dowels and tubes that one can usually find exactly the diameter one wants either in styrene, acrylic or wood. Otherwise you might have to make do with the more limited choice of wooden dowel from the nearest timber merchant or hardware store, or failing that really ‘making do’ with something you have around such as a thin cardboard tube. It’s important though that whatever you use has a firm surface and that superglue sets well on it i.e. a balsawood dowel may not be strong enough.

cutting treads

I am, as always, using 1mm Palight foamed Pvc to solve the problem of needing something that is thin and easy to cut with accuracy, but still having a firm surface, straightness and resilience. Above, I’ve started to cut out some of the treads. I’ve been careful to give each a little bit of the curve of the pole diameter at the centre so that they glue better to it, but the outer edge could either be curved or straight.

cutting risers

Above I am dividing up a strip measured the full length of the steps to make the risers. Since each riser will be glued along the underside of each tread but the preceding tread glued against the bottom of its face, each riser is the proper height i.e. in this case 200mm in scale.

assembling steps

The best way to start constructing is, as I say, to superglue pairs of tread and riser together first, trying to keep to right-angles. Here I haven’t cut all the treads out yet but have fixed the pole (with a spot of glue) in the centre so that the sheet serves as a base and helps to check the positions of the steps as they’re added upwards. This can easily be sliced off later (I haven’t glued the bottom step to the base!).

assembled steps

If this positioning is followed it shouldn’t be necessary to mark the correct heights of steps on the pole itself. In any case there will be some slight variation however exact one tries to be; the overall effect will look right!

balustrade drawing

Often it’s not the steps that present so much of a problem, it’s the balustrade. One solution for achieving this is to cut it as a flat piece which can then be glued and wrapped around in one piece. Again, foamed Pvc is ideal for this because it is flexible but thin styrene sheet or even stencil card would also be suitable.

cutting balustrade

attaching balustrade

The positioning needs to be checked and then fixed in stages since this is not possible in one go. I’ve only made a portion here to show the principle.

completed stair portion