‘So you think you’d like to be a model-maker?’ – Part 1

Above Work by Philippa Spring, as part of her degree show presented at ‘New Blades’, the model-makers annual recruitment fair, 2018, organized by 4D modelshop

I receive regular emails asking whether I have any advice on ‘becoming’ a model-maker. From people asking me, for example, whether I have any good first steps to suggest in terms of developing skills; what sort of work is usually available; what evidence should be shown, or what skills and qualities would I consider to be most important in terms of a person getting work, holding on to the work, and getting more; how the jobs are found, or where does one have to put oneself to be ‘found out about’ .. most often these kind of questions. So I thought it was about time that I tried to consolidate what advice I’m able to offer here. In many cases these questions come from people who perhaps didn’t consider it a career from the outset but have come back to it as a possibility, because their own involvement with it has always felt more rewarding than other things they’ve done. They’re wondering whether they might have what it takes to be a professional ‘maker’, they’re also wondering what the ‘profession’ looks like, and whether it has what it takes to support them.

Above One of the forestry dioramas at the Fisher Museum, Massachusetts, made in the 1930s by Theodore Pitman and Samuel Guernsey

So firstly, what does it take to get the most out of being a model-maker? What I mean here is, what does it take not only to do the job properly, not even to do it exceptionally well, but in order to keep enjoying it, to remain motivated, to keep being inspired, even in the fallow times when there may be little going on? I think this is a much more important question to answer than ‘How do I start?’. It’s a cliché in this business, yes, but the first is patience. Physical patience when manipulating materials is the one most often meant, including the calmness of the fingers, but there are other forms of patience. Model-making is on the whole a very time-consuming job, quite often loaded with very repetitive tasks, so it can help a lot if you’re the kind of person who can as it were ‘feed’ on those times for therapeutic purposes, someone who can even look forward to them. I know I do, and I welcome those stretches when I can ease the tension with something purely ‘mechanical’ without having to think that much. There are other instances of a different kind of patience needed when dealing with things other than materials .. for example while waiting for the right information, or dealing with the lack of it; while explaining how certain things take a long time and can’t be hurried if they are to be done properly, and showing the same patience with yourself if it’s just ‘one of those days’ when nothing is going right!

Next on the list is ingenuity, and there’s much more of that involved than people imagine I’m sure. I’d say it’s a ‘must’ that you’re the kind of person who really enjoys solving the trickiest of problems, who almost has to have them, otherwise every job will be a nightmare. It’s fair to assume that every single job you undertake will include a number of things, some of them like Alice’s ‘impossible things’, which you’ve never done or even thought of before. It’s also best to assume you’ll most often be alone in coming up with solutions, rather than imagining there’ll always be someone more knowledgeable around to ask. Even if you are working in some kind of team, to a certain extent each will have responsibility for tackling their own challenges. Ingenuity takes over where mere creativity is left whimpering.. there’s creativity in all of us, but ingenuity in not so many!

Above Exhibited model from Wes Anderson’s 2018 film ‘Isle of Dogs’, photo courtesy of Fox Searchlight Pictures

Knowledge of materials is something that won’t come ‘just like that’ but is built up over years, so it’s good to start actively collecting that knowledge from the outset. Being able to choose wisely from a number of material options for a task can make a world of difference, especially if there are time or money constraints. On the other hand, there are  some materials which can, once the time is taken to really get to know them, be used effectively for almost anything. For a person who values such knowledge and enjoys collecting it, an otherwise mundane trip to the supermarket, to Poundland or to a DIY warehouse can be like a day at the seaside.

The next is more difficult to mark with a tidy word or short encapsulating phrase but it involves the thrill of, a passion for, or at least an abiding interest in the art of simulation. One of the most important aspects of models, given their usually small size, is the fact that you’ve got to be very clever about which elements of the ‘visual truth’ you select to give a convincing result .. you can’t include them all. You have to capture the essence of ‘why and how’ something looks the way it does. As a model-maker you’re doing no less than a designer does .. artfully selecting. But artful simulation is not just a case of selecting the essential elements and reproducing them faithfully, more often it involves blending them in some way, and blurring or simplifying others to the point of mere suggestion. This works better for the model because the small-scale surface can’t hold too much detail, if it does it will look too ‘micro’, it could be disturbing. You can experience this if you’ve ever managed to make an incredibly fine and minute print copy .. it jars, the contrast is too harsh at small scale, it needs to be softened. It takes a lot to learn how to simulate artfully, some have ‘the eye’ while others could struggle .. and, yes, it is basically just about learning to ‘see’ things properly, being able to separate the backgrounds and nuances from the more obvious elements.

Above Scale model furniture by Ang Rui-Wei, part of her degree show work presented at ‘New Blades’, the model-makers annual recruitment fair, 2018, organized by 4D modelshop

A good byword for the next important thing to have is foresight. This is about anticipating, it’s about being good at visualising, and it’s about being able to plan properly. It can partly depend on what sort of model-making you’re doing but on the whole model-making doesn’t involve so much ‘free-style’ sculpting with a soft material .. if anything it’s much more about cutting out parts and assembling them. For that you need to have a clear plan, a clear ‘mind’s eye’ as to which element is made first, which can then be attached to it and where .. and so on. Foresight is important for the whole process, important all the time, but actually the best example of when this special ‘sight’ is especially needed comes from slightly outside the practical work .. i.e. if you have to predict beforehand how much it’s all going to cost!  Really, in order to do that with any worth to it you don’t just need a very organised mind, you need a highly imaginative one! You practically need to see yourself, doing the whole thing, a bit like a film in fast motion .. reminding yourself of what you know, and discovering what you don’t yet. Whenever I think of tasks such as this I’m reminded of the claims made by Nikola Tesla that he could construct machines in his mind’s-eye, then imagine himself switching them on .. to see if they worked!

Above 1:200 scale residential development model made by Scale Models Weston, Essex

Let’s say that you’ve done enough already so far to know that you really like making models; you’re proud of what you’ve done and you’ve received very flattering comments from those around you .. but you’re wondering how, or what, to develop to increase your chances of ‘earning’ from it, and you’re thinking about how you should present your work so it already looks more ‘professional’ and accessible to others ?

Building up your own ‘portfolio of evidence’ recording what you can do, what you can show people clearly, is the most important next step. The quality of your photos is fundamental here, along with very clear .. but short! .. title information, cluttered with very little other text. Here I should clarify that I’m talking about a sendable PDF (or if I’m wrong, whatever document type is guaranteed to be secure from alteration and effortlessly opened by all). Your CV should be a separate document, by the way, just consisting of ‘facts’ in text and I don’t think the two .. image portfolio and CV .. should ever be mixed. Don’t even think about writing a third, containing a prose ‘statement’ of what you’re about; who you admire, or what your favourite films are!

A PDF comes first, because these days it’s getting more and more unlikely that you’ll ever have to carry around an always-surprisingly-heavy, leather-imitation case filled with glossy pockets and arranged ‘photographs’. We can all be grateful for this and not least because compiling a digital document is so much easier and cheaper. I’d said that the photos must be good! .. but this doesn’t mean, especially nowadays, that only an experienced photographer could do them. Now smartphones can take sufficiently detailed, white-balanced and light-enhanced photos, and it’s these things that matter more than being able to play with special lighting or depth-of-field, unless your model has special requirements. What’s more important is that you take the time beforehand to rehearse viewpoints or compositions, really thinking about what the most informative shots might be. It helps a lot, and takes the pressure off your photo-shoot, if you have a photo-processing programme such as Photoshop or PaintShop Pro with which you can crop, ‘clean’ or brighten the image, or enliven the colours or contrasts if needed. Photos cannot capture the richness and spatial dynamism that our binocular vision gives us, so some ‘enhancements’ are needed to replace that. You need to be careful not to go overboard with any of these though because the effect needs to remain ‘natural’, especially the colour. If you do any of this, it’s best to set the display brightness of your screen to an average, like 50% perhaps, to better judge what others might see on their screens.

Above 1:43 scale model showing the construction of the Metropolitan Railway in the 1860’s, made in 1993 by Valhalla Models (London Transport Museum Collection)

In Part 2 I will be continuing with advice on what to develop if you’re a beginner, including some practical options if you’re stuck for ideas. Then I’ll be answering the question  Who needs models? .. not like it might sound, but rather ‘where models are wanted’, i.e. the disciplines in which models are commonly called for. This is followed by a selection of the most useful companies to look at who are working within those areas.

Bristol Old Vic Theatre School ‘Generate’ at the Truman Brewery

It’s the last chance today to see Generate, the exhibition of work from the graduating MA Theatre Design, Scenic Art and Costume students from Bristol Old Vic Theatre School .. until 3pm today at the Truman Brewery (Unit 11, Dray Walk, off 91 Brick Lane, E1 6QL London)

I wish I’d been able to go earlier than last night, to impress on anyone interested  .. not only in theatre, or theatre design, but simply the skilful and passionate expression of visual ideas .. how worthwhile it was to see it! This little show was like a ‘survival capsule’ .. a gem preserving the brightest blueprints of the best .. or a restorative potion, meant to remind us of what’s good and true! What I’m saying is that there was real magic there, lots of it .. alongside the well-expressed ideas, the craftsmanship and fine-artistry.

I was so fortunate around this time last year to spend a week with the MA Theatre Designers .. Alana Ashley, Roisin Martindale, Oscar Selfridge and Robin James Davis .. going through some basics of model-making with them. I can’t believe it’s just a year, when I now see .. 99% credit to them .. such confident exploration, such visual enthusiasm, such careful attention to every telling detail, such unbelievable workmanship. Credit must be given here in a ‘pandimensional’ scale .. that is, 99% to them, and another 101% to Angela .. Angela Davies Head of Design at BOVTS .. for always being there to guide them through it.

Each successive year I see this excellence from BOVTS .. and each year I’m rejuvenated by experiencing the best in British theatre art!

 

Digital abstracts

 

Digital abstract, 001, iPad finger painting, 2017

001, 2017

 

Digital abstract, 002, iPad finger painting, 2017

                                                                002, 2017

                                                                

Digital abstract, 003, iPad finger painting, 2017

003, 2017

 

Digital abstract, 004, iPad finger painting, 2007

004, 2017

 

Digital abstract, 007, iPad finger painting, 2017

007, 2017

 

Digital abstract, 012, iPad finger painting, 2017

012, 2017

 

Digital abstract, 017, iPad finger painting, 2017

017, 2017

 

Digital abstract, 022, iPad finger painting, 2017

022, 2017

 

Background

I created these painting studies recently using PaintShop Pro and the Procreate painting software for iPad. The forms developed from a combination of two related sources .. impressions received while searching the Thames foreshore, and my collection of used painting palettes.

I feel I might be making some progress in getting more comfortable with working digitally, making the digital manipulation of images actually work for me .. to give me what my mind’s eye wanted .. rather than generating enticing variations which, however interesting, move in other unforeseen and unprepared directions! In traditional image making .. I mean physical painting or drawing, applying real substances onto a physical surface .. there are many limitations in comparison. With continual practise one can extend the range gradually but also become comfortable in working within these limitations, even turning them to advantage. The way one works within limitations defines one’s self .. one’s hand-print, one’s style, one’s visual aesthetic .. with consistency it almost guarantees that what one is doing will be different from another’s. Paradoxically, the infinite range provided by digital image making has led, it seems to me, to a lot of people’s work looking very much the same!

As for the Thames foreshore, I think I’ve written elsewhere that much of the experience is about tuning in to the special ‘otherness’ amongst all the sameness, or looking for the natural or man-made signs of ‘life’ amongst  the stones. But the interesting thing is that while doing that I think I’ve acquired a heightened sympathy for it ALL .. the whole range of same, similar, other or distinctive .. because nothing is identical, and everything however simple has a character of its own! In particular, there are the flints with their strong contrasts of dark and light, and their lifeform-like suggestiveness. I have a theory that it was stones such as these, the very same ones around at the dawn of humankind, which assisted the first inklings of the idea that we could both imitate other things and create shapes of our own.  

The other aspect of my Thames foreshore experience which seems to be soaking into my work more and more is .. trusting the ready-made, accepting the found object or, in other words, having faith in serendipity .. and this leads in to my second source of inspiration. For some years now I’ve been collecting up the painting palettes used in my courses, letting them dry and scanning them before soaking and scraping them clean. Have you ever stood in front of a ‘non-representational’ painting and been almost literally struck by an overwhelming feeling of ‘rightness’, a feeling .. that the balance is so sensibly poised between harmony and conflict, that the colours are so carefully considered, or that it can suggest a number of ideas but doesn’t need to be any of them? The thing is, on a number of occasions I’ve been hit by a very similar feeling while looking at a used painting palette! Is it possible that a few minutes worth of unfocused paint mixing can inspire the same feelings as weeks of painstaking work? Why not? Isn’t a painting palette a perfect example of form and colour for it’s own sake .. because it can’t be anything else? Isn’t it on the one hand pure and untainted by thought and on the other an honest embodiment of natural forces? When a painter composes an evocative abstraction, i.e. one which elicits agreement on an emotional rather than an intellectual level, aren’t they just painstakingly recreating in their own terms those same instances of rhythm and interruption, sameness and otherness, the individual and the whole, determinism and randomness .. the same that occur in a littered street, a stony foreshore or a painting palette?

While working on these studies I have become very interested again in the questions surrounding abstraction and in particular its relationship with music. This relationship is not about painting that strives to be ‘like’ music, to imitate it, certainly not painting that seeks to evoke musical or auditory sensations. It’s painting that attempts to parallel the way music is experienced.

Why is this so terribly hard? The urge to create paintings that could be experienced like music was introduced into the Fine Art forum about 100 years ago, but that means it’s still a fairly recent notion in the timespan of cultural history. Many recently past or contemporary artists may have evidenced how it could be achieved but that remains only one side of the deal that needs to be struck between creators and public perceptions. It may just be impossible; it may even go against the way we perceive things?

For me the fundamental is ‘Can we appreciate something without feeling the need to recognize what it is, where it comes from or what is meant by it?’ Yes, that’s possible with music! Of course if music appeals to us we become curious about where it comes from, and we may begin to formulate other questions, but those and other thoughts hardly affect its appeal while listening to it .. and I’m sure that most people would agree that the question ‘what is meant by it’ is unlikely to be in their minds while enjoying it? It does its job without the need for meaning! To put it another way, music can work on us without the need to reference anything other than itself.

Why can’t we do that with painting? For the moment I’m fairly convinced that we can’t .. but I don’t know why yet. Is it simply because vision is our primary means of reading, interpreting or in other words ‘making sense’ of our world, so we just can’t let go of that basic directive when it comes to processing anything visual? Or is it linked to the very different way we receive the two i.e. music can only ever be one note at a time, as it were, whereas a painting is commonly taken in all at once, then re-examined in detail? So the brain has to process the input in a different way? In a sense, music is never there, it can’t be ‘frozen’, our perception of it is a combination of the memory of what has been and the anticipation of what is to come. Maybe it’s just this disembodiment which is the key to understanding why music can work on us so ‘abstractly’ whereas painting cannot?  

     

The coalescence of putti in a summer sky

 

coalescence_basis1-5_1200

 

coalescence_basis1-4_1200

 

coalescence_basis1-3_1200

 

putti11-15_2_1200

 

putti11-15_1_1200

 

putti11-15_3_1200

 

Background

In preparation for an exhibition of my sculptural work next year I am planning to show a lot of my working sketches. In fact, I’m hoping that the exhibition will feature process just as much as final outcome, not only sketches but maquettes, colour/texture samples and even the raw materials, but at the moment I’m not sure how far I can take this. I’ve recently been trying out a new method of preparation and idea development, which first involves creating maquettes, photographing them and then using these photos to explore/develop form and colour digitally. Because digital material is infinitely adaptable and reusable it opens up all sorts of rehearsal/improvisation opportunities. It can also lay the basis for promoting sketchworks to finalised outcomes in their own right.

My new work on one of my favourite subjects of ‘putti’ is a case in point. The interest developed many years ago during a visit to the Bayerisches Nationalmuseum in Munich. Amongst many other truly emotive and tactile examples of Baroque sculpture, the museum had one of the best collections of nativity dioramas in the world. In a darkened, maze-like room thick with atmosphere I saw huge installations filled to bursting with carved figures. In many the richly blue skies were just as crowded, with colourful airborne beings .. many of them adult-looking angels, but just as many infants, and as I remember it, some were just fragments or, as if, in the process of forming .. like heads with wings, or clumps of flesh-coloured buds with golden petals, sprouts with layers peeling. This made a deep and lasting impression .. though a mainly formal and associative one. I don’t subscribe to religion, but I can be moved by the beauty such devotion generates.

So for the ‘putti’ sculpture I’m working on .. and have been nudging forward on-and-off for years .. I’m trying to recapture that thrill, trying to find a sculptural form which will suggest the physical simulation of something glorious .. but also ancient, and also strongly organic. For example the words ‘protean flesh’ spring to mind, and that’s the reason why I’ve preferred to keep to the title ‘putti’ rather than something more maturely angelic, because this makes me think of ‘putty’ and particularly the gorgeous, dark pink, rubbery ‘silly putty’ one could get when I was a child which seemed to have an innate life and will of its own and could become many things though only what it wanted to.

So I think it’s very fitting that I happen to be using digital material to find a way through this .. it’s very fluid, it can be breathtakingly spontaneous, all manner of variations can be fairly instantly and effortlessly previewed. Although in the beginning I fought against the intangibility, the fact that what I was doing did not really exist in any physical sense .. until it’s printed, and then it’s something else .. I think I’ve come to value that ethereal, ‘protean’ aspect. In a sense it has more allegiance to, or is in the same space as, what’s inside my head.

Technical

As I said though, I prefer to make something physical as a starting point, providing an anchor .. but something simple, no real pressure, it’s just raw material for transformation. These are the ‘putti’ forms I produced a while ago in response to the flying angels, and which I still want to use as a basis ..

putti originals

.. though over the years they’ve acquired a lot of experimental patination, because I haven’t been able to get the surfaces right yet.

older putti photes 2015

new putti photos Dec2015

To create the sketches I took these, or similar photos into PaintShop Pro where I could experiment with either softening or enhancing contrast. Eventually I found that the best basis for the effect I wanted was to enhance the contrast and deepen the shadows but change to an almost complete monochrome, to give more freedom when later ‘colouring in’. For this, the main ‘painting’ process, I exported the modified photos to Procreate on my iPad.

Procreate is a ‘painting’ application developed solely for the iPad. It has given me pretty much everything I’ve wanted so far from this kind of tool and I would strongly recommended it .. though I don’t know how it compares to others since I haven’t had to consider them. In either working colour gradually into the photo-basis or making alterations to the forms I found the brushes, blender and eraser nicely delicate. I did experience some frustration though, which I have not yet overcome .. feeling that I couldn’t fully judge what I was doing, compared for example with controlling the effect of real paint, pastel or pencil shades on paper. It also took me a while to realise that, for all the choices of brush or setting that digital painting offers, one has to choose a manageable handful of favourites and stick with them.

Recommended websites for visual research

You’ll find this list now under Visual research in the Methods section, and I’ve illustrated it with examples taken from some of the websites listed. I’ve compiled it with scenic designers in mind .. set designers for theatre, film or television .. but I’ve included a section on ‘Costume and fashion’ and the list should also be of relevance to prop-makers. Apropos ‘subject divisions’, I think I still need to work on these .. I’ve divided it according to instinct and feeling, but it may need a bit more logic. Like many things on this site, it is a work-in-progress, meaning that it is meant to develop over time even if this is hardly perceptible.

The so-called 'Hobbit House' built by an eccentric artist in the Cotswolds

Above from derelictplaces.co.uk .. the so-called ‘Hobbit House’ in the Cotswolds Below from collectorsweekly.com .. Eric Eakin’s collection of bedpans.

Eric Eakin's bedpan collection

I will always be on the lookout for interesting additions to this list, so if you’d like to recommend any yourself don’t hesitate to get in touch. I’ve given preference to websites with high visual content obviously, but the quality of supporting information has been almost as important. The Internet is a vast and far-reaching resource for all of us .. the task of making it more ‘responsible’ is one we all share!

 

Why not just Google?

A while ago I thought it might be useful to put together a list of websites most valuable for visual research, either those I’ve used and favorited in the past or some recommended by others, and I posted in Facebook groups such as the Society of British Theatre Designers (SBTD) asking for suggestions. Many thanks for the comments I received! .. I’m still working on the actual list and I will put it in a new folder Visual research in the Methods section very shortly.

For the time being I wanted first to provide a sketchy illustration as to why one shouldn’t confine one’s visual research to Google .. at least, not to the extent I’m accustomed to seeing from my undergraduate teaching. Don’t get me wrong! .. I don’t believe that Google Images can be .. or should be .. ignored! It all depends on how one uses the tool. For example, it is often my first port of call if I first want to define exactly what I’m looking for or to locate sites which are likely to give me better images and more information.

As an illustration, if I’ve really no idea what a ‘duchesse brisee’ is I can type it in and Google will very likely correct me if I’ve got the spelling wrong. That’s a great help in itself! Most of the images then displayed will give me a clear and immediate indication of what it is but also give me a wide choice of period interpretations. It may help at this point to change the search size from ‘Any’ to ‘Large’ because this often keeps the more informed sites and cuts down on the Pinterests and Flickrs. Now Google can be .. and should be .. left behind to refine one’s choice; checking the period and country of origin, and generally acquiring the kind of supporting information that sensible designers need to have! Here for example is the one I might have chosen  ..

Louis XV period duchesse brisee

The website it’s from.. Antiques.com ..tells me that it’s Louis XV period or mid 18th century, carved in walnut and even that it’s attributed to the maker Pierre Nogaret. A quick Google of ‘Pierre Nogaret’ shows me many other pieces of furniture of the same feel and period. Unusually Antiques.com doesn’t provide measurements in this particular case, but many other antiques or restoration sites do for similar pieces. Here Google repeatedly offers an invaluable ‘means’ ..but not the ‘end’.

Or to take another example, if I want specific information on what a tenement dwelling in New York looked like in the 1890s I might also try Google first just for fun. In this case, because typing ‘1890 New York tenement’ could bring up too many irrelevant results it may be better to choose the ‘Advanced’ search option and type one’s search words in the ‘all words’ box. When I did this I was presented with this image from someone’s Flickr page, which looks pretty authentic and is entitled ‘New York tenement 1890’, but as often with Flickr or Pinterest there’s no other information and no indication of source so that I can verify that it’s authentic! For the serious designer this is a rather ‘blind alley’ and therefore a waste of time.

photo from Jacob Riis 'How the Other Half Lives' first published 1890

What one needs to do is either scroll down to see whether the image appears again from a more ‘official’ source in which case there is likely to be more information about it or, failing that, click on the thumbnail and use the ‘Search by image’ option in the window that appears to find other sources. Luckily this image appears on a number of reliable sites such as the Smithsonian, Britannica.com or Wikipedia and further clicking on any of these will reveal the fact that the photo comes from a priceless social document How the Other Half Lives published in 1890 by the American journalist Jacob A Riis (although initially the photos were reproduced either as line drawings or halftone and wouldn’t have had the impact they have today).

photo from Jacob Riis 'How the Other Half Lives' published 1890

The point I am making is that someone intent on the ‘fast-food’ method might not even discover that, or the wealth of other relevant photos from Jacob A Riis that might not fall within the search terms used. Sure .. Google, Flickr or Pinterest will deliver instant results which can be effortlessly collected. It’s so easy to ‘click and save’ that even the thought of having to halt one’s happy gathering in order to check and document weighs curiously heavy!

The way we used to work as theatre designers before the establishment of the Internet could be admittedly arduous at times .. we had to go to libraries! We had to first search through catalogues arranged by subject or browse the shelves to locate books that might be helpful. If we found images we wanted to ‘keep’ we would have to take them down to the photocopier .. often just black&white, if there even was one and if it was working! But that meant that we had to become very focused and selective in our responses to images and the choice of them! We had to make conscious notes of where we found things, rather than trusting a computer to save that info ..which meant we were accustomed to reading and digesting it first! The books we found the images in would usually tell us all we needed to know about them and suggest yet other sources in their bibliographies. More often than not, writers were both circumspect and thorough when it came to the printed word! All this could be time-consuming, but on the other hand we could assess the quality and relevance of a book in mere seconds, just by flicking through it .. try doing that with a website!

Jacob A Riss understood not only the value but the necessity of ‘hard graft’ .. as a humanitarian, a pioneering journalist and a documentary photographer he was essentially optimistic, driven and persistent! Any serious designer, especially for theatre/film/television, has to operate in much the same way as an investigative journalist like Riss .. leaving few stones unturned. The problem with the Internet is that there are far too many pebbles!

Making ‘white card models’ for film or television design

I have fully updated this article, which was originally written a few years ago, and I have added some more illustrations. This form of model-making is, I think, still proving itself invaluable despite increasing competition from the likes of SketchUp. I’m keeping it in the Methods section for the time being, though not sure whether it shouldn’t go with Technical Drawing.

The following aims to serve as an introduction to the purposes of the so-called ‘white card model’ in film/tv design work, what it should include, and the materials one can choose to make it. In the case of the materials and techniques recommended, it is really just an overview of possibilities and doesn’t go into full, step-by-step instruction on how to build. It is important to make the distinction right now between the ‘white card model’ meant in this case and the other case .. the exploratory, often rough and inexact, sometimes coloured, ‘sketch’ model which is often referred to by the same name, especially in the theatre. The ‘white card model’ of the present context is, in many ways, anything but rough and inexact and most often, due to its usual place in the chronology of design steps, it is no longer exploratory.

‘White card models’ explained

Although the film/tv production designer is free to use a wide variety of visual means in developing and recording a set design concept, including rough or ‘sketch’ models during the early stages, the so-called ‘white card model’ produced for the final stages conforms to very specific requirements. It is usually made once the design has been finalised, most often incorporating the detailed technical drawings created for the construction of the set. It is therefore quite literally a three-dimensional ‘blueprint’ of the intended design.

white card model

It is usually not a realistic, atmospheric rendition of what the set will look like, let alone how it will appear in the film. It may offer no information on colour, little on texture and materials, but all the most essential information on space, structure, movable elements and their practical implications. The designer may build a version earlier in the design process to test the design’s three-dimensionality ( to check general proportions, to better visualise filming possibilities etc.) but these things have usually all been worked out by the final stage and here the model made is more of a communicative device than a ‘testing’ tool. It serves as a communication to the whole film crew. It tells the director and the cinematographer exactly how much space there is for whatever action is required for a scene but also gives a summary idea of what will be seen behind it (this supports the value of creating technical drawings/model with some graphic indication of surface textures etc.). In addition it tells the cinematographer, and camera, sound or lighting crews, how much space there will be for equipment and whether any obstacles such as pillars, steps or levels need to be planned for. It gives an overview for the technical crew responsible for building and furnishing a set (or modifying an existing one) of how much work is required. It furnishes the financial administrators with the same overview to help them assess the costs.

The most common scale for this model is 1:50 (or the equivalent 1:48 if Imperial ..feet and inches.. is used). This is usually the scale in which the main technical ground-plans are drafted, and it is generally accepted that this is neither too small to show a significant amount of graphic detail nor to appreciate proportion in relation to the human figure. In any case models in a larger scale i.e.1:25 simply become too big to be manageable. Common types of card can be used, with the drawings spraymounted to them. These are then cut out and assembled to form 3D structures. The ‘rule’ is that anything which has a significant physical bearing on the set space (such as a pillar, steps, changes in floor level, opening doors, railings etc.) needs to be represented in 3D whereas anything which can be ignored from the point of view of space (such as shallow decoration or panelling, light curtains etc.) can be left flat as drawing. I always recommend that, at 1:50 scale at least, one can safely represent most things under 5cm deep (in reality) as flat drawing. 5cm amounts to a thickness of 1mm in a 1:50 scale model. On the other hand, anything protruding 5cm or more should be given that physical thickness in the model! For example a thin modern radiator could be just drawn whereas an older, more ‘bulky’ type really needs to be represented more physically in 3D (at the very least as a separate cutout which is stuck at the correct distance from the wall to convey the object’s total depth). Another common example is bookshelves, which also really do need to be shown in their proper depth however ‘fiddly’ this might seem. This is to ensure that there can be no misunderstandings about the exact spatial limitations of the set, which is of vital importance considering the amount of money in filming-time which such misunderstandings might cost.

One exception to the ‘5cm rule’ may be the floor area .. and this calls for the personal judgement of the designer/maker. In the case of the floor, even differences under 5cm could have a huge physical impact in terms of moving things around, so it would make sense to emphasize these physically in the model. It helps even more if the height indications included on the drawn ground-plan are kept visible .. another good reason for using the actual ground-plan, pasted to the baseboard.

There is always a margin left for personal judgement! Just as there is always room for the personal touch, to be a little bit more personal, creative or even .. aesthetic! .. in how one renders one’s own technical drawings (better still if it actually enhances rather than detracts from the communicative clarity of them!) the same should apply to the white card model. Showmanship may not be strictly necessary in practical terms .. but it can inspire!  Even this kind of model can be stylish as well as functional and, dependant on individual taste, ability and.. most importantly.. time, it can be embellished with graphic detail, structural finesse or effects designed to ‘sell’ the visual concept. Even at the later stages of design development it pays to be truly creative with the model, to be inventive with methods of representation or ‘simulation’. Such experimentation can directly pool into what I call our general ‘creative matrix’ as designers. I wouldn’t say that elements of colour are totally ‘banned’, but particularly here it is important not to upset the overall balance. Colour can become a distraction, giving visual weight to some elements to the detriment of a balanced overall view.

Edwina Camm white card model

Above is part of a white card model made by Edwina Camm for ‘An Instance of the Fingerpost’ an MA Production Design film project at Kingston. Edwina drew her original technical drawings this way .. little needed to be added to create this rich, convincing effect when used for the white card model.

There is another form of ‘white card model’ often used in film which I’d call ‘virtual’ or imaginary .. where a building, structure or even a whole landscape is constructed in precise dimensions even though it will never be physically built in its entirety. These are just as important to the production process because they make sense of how the various embodiments of the ‘set’ (whether CGI, built interiors, realistic physical models made for filming) are meant to fit together. I will be coming back to these later, but for the moment we are still concentrating on white card models for physically built sets.

There now follows a short list of the most significant individual points worth noting:

The base on which the model is mounted should be flat and stable i.e. secure enough to be a good support, not only when transporting the model but also for resting it down even where there are no totally free table-tops available. Production offices are often like this, and certainly studios or locations with sets in progress. Mountboard on its own is never enough! Generally 5mm foamboard will suffice for an A2 size model and 10mm foamboard for A1 and is often a better option than choosing heavier plywood or MDF! However if the foamboard is warped (and the cheaper polystyrene core foamboards often are) this must be first corrected by firm bracing on the underside. Another important extra precaution is protecting the baseboard corners against knocks (perhaps just by gluing triangles of mountboard on the top side). There’s nothing that transmits an impression of carelessness more than a lot of bashed corners! These may well become inevitable with a ‘working’, much-carried cardboard model, but just a little bit of extra strengthening can limit the damage. One needs a balanced attitude with respect to all this .. on the one hand caring about one’s professional appearance but on the other accepting that in a heavily populated working environment one can’t remain too ‘precious’!

White card model for 'Moon' 2009

Model in preparation for the build of the Sarang moon-station for the film ‘Moon’ 2009 on Shepperton Studios K-Stage. Often to save time, and if changes are anticipated, the white card model is mainly held together with pins .. unfortunately these models are always falling apart! Photo courtesy of Gavin Rothery.

The ground level (at least the visible set floor) should also be represented in white rather than bare wood if this is used. There should be a unity .. or rather, the word is homogeneity .. of colour and treatment throughout the model. But it should show very clearly where the floor is ‘the set’ and where it is not, so sometimes it makes sense for the ‘offstage’ to be differently coloured. Most often the master groundplan is used, spraymounted to the baseboard. If this groundplan is properly done, then (sometimes overlooked) elements such as scenery seen through windows will be automatically accounted for in the model. For obvious reasons even small ground surface elements or slight level changes will have an impact on how the space can be used, so these need to be physically represented in the model rather than just drawn. If you’re lucky, slight changes in level are easy to achieve just by layering different thicknesses of card on top of the baseboard. If you’re unlucky and part of the floor sinks below the common ‘0’ level, this is another good reason for using something like 10mm Kapa-line foamboard as a base. The section that sinks can be carefully cut out (a precision job with the scalpel), the paper can be peeled from the back of it and the foam sanded to make it thinner, and the section can then be glued back where it came from .. now a little sunk.

There should always be at least one scale figure included, simply as a familiar indication of scale. In my experience, as long as the essential proportions are right this figure should be as simply conveyed as possible and flat cut-out figures often look better in this context than 3D ones.

Practicals (i.e. working or moving elements) such as doors, shutters or removable parts need to work in the model, or at least be clearly indicated as movable. This should remain within reason ..for example, it is easy enough to half-way cut through card to make a working door but it would be unreasonable to expect a working roller-blind! In cases like this the simpler shortcut would be to make the model with the blinds open and make separate inserts to convey the effect of them down if this is necessary. Even in the simpler case of practical doors it may be better just to glue them ajar to show that they’re practical. Having to flip little bits of cardboard open in the model just to show that they open seems a bit unnecessary and could even be dangerous to the model if nerves are affecting one’s motor-control! It is often necessary to make parts of the model removable so that, especially, interiors can be better seen and to take better photos of these parts. This may directly reflect how the set will be built for filming in which case the so-called ‘floating’ walls will be indicated on the groundplan. Ceilings are a bit of a ‘grey area’ (i.e. often misunderstood) when it comes to the white card model. Strictly speaking if the walls of a studio set are going to be built to a certain height, even if that extends beyond what the camera will see, they should be built to that height in the model. Similarly if a ceiling exists in a used location it should be included, to make it clear where it is, even if the camera is going to avoid it. This would then need to be made detachable. When the ceiling becomes a feature of the design it should definitely be included, but again detachable.

Windows which are meant to be seen through (or any transparent surfaces) need to allow just that in the model, and need to be cut out, and also surfaced on the back with thin acetate to make it clear if they are going to be glazed (this for example is something both the lighting and sound crews will need to consider).

It is a common mistake to forget that something will be seen through a window, or an open door. If the set design has been conceived and developed largely on the drawing board it may be only at the ‘white card model’ stage that this is even considered! By then it may be too late for major alterations or to create more space for backdrops etc. Digital insertion via blue or green screen, or even old-style back projection, may solve a number of problems .. but these also should be planned for earlier in the design process. This is yet another solid argument for starting the physical model process early on, if only as rough ‘sketch’ version.

Edwina Camm white card model

Another example of the illustrative quality of white card models from Edwina Camm, also showing the importance of including the ceiling in this context.

If slender structures just as stair balusters or metal railings (although spatially flat) are left as blocked-in drawings they can create a false impression of space and often completely obscure the effect of the stairs. These are far better represented as cut-outs where humanly possible. An effective and often easier alternative however is to draw these structures with permanent ink on acetate sheet (but the acetate should ideally be matted to differentiate it from glazing).

There should be no short-cuts taken when representing steps, even long, regular flights of them (i.e. sometimes done by representing them as a flat card incline). This can be visually confusing. It is understandable because making them can be tedious, but ‘sandwiching’ foamboard or card to form the correct ‘riser’ (meaning the height of a step) and then simply layering these is one way of making construction much easier.

Should a ‘white card model’ stay white?

I’ve written elsewhere that I don’t consider pure white card to be the right medium at all when it comes to representing, or even just mocking up spaces. I think that at the very least off-white, beige or light-grey should be used because white is far too glaring .. it bounces the light within and around it like a pinball and consequently it gives a misleading impression of interior spaces! But it’s different when copies of the technical drawings are pasted to the surfaces .. there is less glare and, dependent on the style of drawing and the copier settings, often a variety of grey tones.

As I explained earlier, the effect should be monotone, rather than particularly white. The model can even be sprayed, as long as this doesn’t obscure the definition of the drawings.

SCALES AND SIZES

Since the white card model is commonly a pasted, 3D version of the technical drawings  one would assume that these dictate the scale of it .. but this is only partly true. As I’ve said 1:50 (or 1:48) is the most practical scale and the master ground-plans are often drawn in this scale. But the elevations (meaning the vertical faces of walls, structures etc.) may have to be drawn in a larger scale, such as 1:25, if there is a lot of detail. These drawings therefore have to be converted to 1:50 .. i.e. copied half-size.

Most people with some experience of working with scales would not have to think that long to arrive at ‘half-size’, or ‘50% reduction’ when thinking of the conversion from 1:25 to 1:50 .. it seems obvious. However, what if the elevations have been drawn in 1:20 scale and need to become 1:50? Less obvious, isn’t it? To solve this little mental problem we have to go back to ‘1:25 to 1:50’ and look at what we might have done. If we divide 25 into 50 we get ‘2’ .. if we then divide 2 into 100 we get ’50’. That’s the percentage reduction. So .. 20 into 50 gives us ‘2.5’ and 2.5 into 100 gives us ’40’ .. so this time it’s 40% reduction.

A common mix-up that arises when thinking or talking about models is between ‘scale’ and ‘size’. For example, a 1:50 scale model will be ‘smaller’ both in scale and physical size than the same structure modelled at 1:25 scale but the 1:50 version might sometimes be referred to as a ‘larger’ model because it enables a ‘larger’ area of the real thing to be modelled. To avoid the confusion one should make a habit of referring to ‘smaller’ or ‘larger’ only in terms of scale, i.e. a ‘larger’ model is one that is made to a larger scale even if it ends up a physically smaller portion of the whole. The scale 1:20 is a ‘larger’ scale than 1:25 but many people also get confused because, from the way it is written, it appears a smaller value. It may be a little easier when working with Imperial (feet and inches) and referring to ‘half- inch’ or ‘quarter-inch’ scales, more obviously decreasing in size.

By the way, another misunderstanding often arises when confusing dimension and surface area. For example, when asked to double the size of an A4 drawing many might think ‘A4 to A3’ but this, although doubling the surface area, is not doubling the dimensions. To double the dimensions you need to choose the next size up, i.e. A4 to A2.

Even if one has recently completed the technical drawings, before starting a 1:50 or a quarter-inch white card model .. or any scaled model .. one should take a moment to re-acquaint oneself properly with the scale again. One should, for example, look at how small a figure is (average male actor 1.75m high), how high a door might be (average 2m high), but just as importantly how thick a piece of card is needed to represent 5 or 10cm reasonably accurately.

white card model

Above is an illustrative ‘sample’ of white card model, simply made to convey a few of the typical things mentioned above .. and not outwardly expressing any aesthetic! However, it is clean and neat .. in other words the making of it looks cared about. One should never underestimate the importance of this! On the other hand the white card model works for a living .. it gets around, it’s handled and it gets worn at the edges .. so there’s no sense in getting too precious about it.

Wyeth style house

But, there’s nothing to say that the white card model can’t be dressed with some style! The model above was created by Patrick Scalise while a student at Wimbledon College of Art.

VIRTUAL WHITE CARD MODELS

This may seem like a contradiction in modern language but you’ll understand, it’s the best way of describing actual physical scale models made of buildings, structures or landscapes that are never going to exist in their entirety in real size .. but are treated as if they will! If you visit Warner Bros. ‘The Making of Harry Potter’ you’ll see a number of these, alongside other white card models for interiors and other large ‘props’ that were physically built.

Hogwart's white card model

Hogwarts was a very clever, highly complex and meticulously planned creation which brought together CGI, real locations, realistic physical models and full-size builds. This white card model is pivotal in giving the countless people involved a clear and immediate understanding of how each part is meant to go together.

 

MATERIALS AND TECHNIQUES

Foamboard

White foamboard is one of the most common materials used as a structural basis for
these models, together with the thinner mountboard. It is light and very easy to cut, though quality and properties differ widely according to brand and price. Its main advantage is in combining ease of cutting with robustness (i.e. it maintains its straightness while still being soft) but its thickness can also be a bonus when defining proper walls (e.g. 5mm at 1:50 scale represents 25cm). It is manufactured in 3, 5 and 10mm thicknesses, though often only the 5mm is stocked in shops. Cheaper foamboards are filled with a relatively coarse-celled polystyrene which doesn’t stand up to solvent glues or spray-paints, whereas the foam interior in more expensive brands may be denser, giving a cleaner, more solid cut edge and perhaps a slightly more dent-resistant surface. The better brands will usually accept even PVA wood glue quite well for bonding. This is certainly true of the superior polyurethane foam in Kapa-line foamboard which will accept even solvent glues such as UHU and spraypaints. Kapa-line remains straight even under humidity (other foamboards are often quickly warped) and it has the added advantage that the paper layers can be carefully peeled off, either to facilitate bending into curves or to use the foam on its own as a material.

Cutting
When cutting through card with a knife a slightly angled edge is inevitable however upright one tries to keep the blade. The thicker the foamboard the more pronounced this can become. This may not always be visible or matter, but better right-angled edges are needed when gluing two pieces together to make a corner. One possible way of solving this is by cutting just half way through on one side, taking the line carefully round (i.e. with a try square) to the other side and completing the cut in exactly the same place on this side. If the foam edge is uneven this can be gently sanded using a sanding block. In fact if one can use a right-angle sanding block gently enough any foamboard edge can be sanded clean and straight. The fuzzy burr of paper which develops along both sides can be removed by carefully ‘scuffing’ with the sanding block at a 45degree angle. Extra care needs to be taken while working with foamboard not to press down too firmly while steadying the sheet as finger-dents are very easy to get.

Joining
Strong PVA glue (always better to use the ‘wood glue’ type rather than the economy-style ‘school’ glue) will bond foam-to-card well but not instantly, so joints often have to be temporarily taped together with masking tape while setting. One should usually allow at least 15 minutes for this. An alternative ‘trick’ is to insert a few short lengths of double-sided tape along an edge to be glued so that these hold the card pieces temporarily but firmly together while the slower glue (alternating in between) is taking effect. Using a solvent glue such as UHU may be quicker, but it dissolves the foam in the standard brands so clean or effective gluing is not always guaranteed. Coating any foam edges first with slightly diluted PVA will solve this and when dry, UHU or sprays can be used on these edges, but it is rather laborious to go to this trouble.

Bending
Whether curved walls need to be made in either foamboard or mountboard the method is similar. The material needs to be cut half-way through in repeated parallel lines (as little as 2mm apart for a tight curve), making it more flexible. But the grooves only work for bending one way, so for example an ‘s’ curved wall has to be grooved in alternate positions on both sides for it to bend properly into an ‘s’. The walls can be surfaced with paper to hide the grooves, but the curve must be secured (in the right curve) before this is done (if done before it will stop it from bending) and it’s better to use permanent spraymount otherwise a thin paper covering will buckle badly.

Other methods include .. if the superior Kapa-line foamboard is used, the paper layer can be peeled off (either from one or both sides) making it much more bendable without having to score the surface. Perhaps an even easier alternative for achieving curving walls is to use a dense foam sheet such as Plastazote, which is spongy and very flexible, or a thin styrene plastic (see below).

I have to say that I have mixed feelings about the use of foamboard for these models. On the one hand a good, robust, polyurethane-core foamboard is invaluable as a lightweight baseboard .. but if a cheap polystyrene-core one is used it is liable to warp badly over time and ends up showing every finger impression! This is also the problem when using foamboard for wall construction. It has to be handled very carefully, and unless one has taken the trouble to practise with the material for a while before trying to cut clean edges or door/window openings .. it just doesn’t look good! It’s true that it can be a massive time-saver in terms of representing appropriate wall thicknesses, as mentioned earlier. I would suggest you use it sparingly until you’ve mastered how to achieve perfectly clean, straight cuts.

White mountboard

It is essential to have white mountboard (or equivalent white card between 1-2mm thick) i.e white on both sides rather than white/black. Otherwise, the model can become chequered with distracting areas of black. In any case white mountboard tends to be cheaper and some brands are softer to cut. As with foamboard there are many similar brands of white card with a standard mountboard thickness (c. 1.4mm, or 1400microns as it’s sometimes written) and these will vary greatly in hardness and quality. Matte is definitely better to choose (there are some semi-glossy types), and avoid white card which has a noticeable layering inside (a bit like plywood) because this is likely to be the toughest to cut! The same is true generally of ‘greyboard’ or recycled grey or brown cardboard which is hard and full of gritty particles.  Most of the softer forms, such as the standard Daler-Rowney mountboard sold in A1 size sheets are fine for perhaps most of the work ..walls or simple cut-outs.. but unsuitable for more delicate structures such as railings for example, because they are too thick in scale and will break apart if cut too thin.

Cutting
As a general rule when cutting anything by hand with a knife it is always better to take things carefully and slowly. There is never any advantage in being able to cut right through in one go even if that is relatively easy. A straighter, more right-angled and
cleaner cut is almost always achieved by starting carefully with a very light guiding cut and following through a few times, increasing the pressure gradually. As with all straight cutting, it should be done against a flat metal ruler (non-slip, or with masking tape along
the underside to make it so) and positioned so that the main light source is falling into the cutting edge, so that the marked line is not obscured by shadow. It is surprising how many people who might in other respects be very able with their hands find it quite difficult to cut a straight, clean line. From my experience of witnessing people trying to cut a straight line (must be easily in the thousands by now!) I’ve come to the conclusion that the problem lies in not properly ‘feeling’ the straight edge of the ruler enough to stick with it. It may really be this simple! The best advice I can give (apart from the points above) is to spend a little time getting acquainted just with what it feels like to press the scalpel blade firmly against a metal edge and move along evenly. It may also help to say that the scalpel blade is ‘meant to’ bend a little with the pressure of being pushed against the ruler and that if it doesn’t its always liable to wander.

Gluing
White Pva glue is always the best and cleanest option when gluing almost anything porous, like cardboard. Strong Pva (a.k.a wood glue, such as ‘Evo-stik wood’) invariably gives stronger and cleaner joins and a good quality Pva can be surprisingly quick. When gluing edges the PVA must be used sparingly (and excess wiped off) for the quickest results on card. Especially if two larger pieces are being laminated (i.e. glued surface-to-surface) only spots of glue are needed to hold them firmly in place otherwise the water-based glue will cause warping if spread on too liberally.

If .. for whatever reasons of your own .. you prefer to use UHU, you must be able to control it! Unfortunately the UHU tube nozzle, the consistency of the glue and the way it comes out, are not designed for really precise control .. such as is needed when trying to apply the glue to a thin edge of card for example. Some practise is needed first. One tip is that if you want UHU to stick firmly more immediately .. almost as superglue does .. you have to apply the glue and position the piece down as you normally would, pressing firmly, but then lift it up again just a few millimetres. This will ‘string’ the glue slightly, and when you press the piece down again the bond will already be much firmer and will not need supporting.

Thinner white card

It is essential, if you want to keep in scale, to have recourse to something thinner than mountboard but still strong enough to stand up on its own if need be. It also helps if this card doesn’t fragment (divide into layers) so easily when finely cut. Usually the thin white card sold in art shops is not labelled by thickness but according to its weight per square metre. College shops in the UK tend to stock inexpensive thin white card from the art supply firm Seawhite in 200, 300 or 600gsm weights. The 300gsm is roughly 0.5mm thick and the 600gsm 1mm thick. These are quite strong, but also suitable for delicate cutting.

1:48 scale model for 'Boardwalk Empire' 2010

The 1/4 inch (1:48) scale white card model for ‘Boardwalk Empire’ not only fully clarified the space but also communicated much of the ‘look’ due to the inclusion of the signage. Courtesy HBO ‘Boardwalk Empire: Designing an Empire’.

Stencil card

This type of card is also known as ‘oiled manilla’ and is meant for making very fine-cut stencil shapes. The manilla card has been impregnated with linseed oil which prevents it from fraying or breaking so easily. This treatment also gives it a slightly waxy composition, making it easier to cut and ensuring a very sharp edge. Although it is by far the best for intricate work .. especially to convey repeated balusters, railings, delicate window frameworks etc .. it is not ideal for strictly ‘white card’ models because of its warm ochre colour. If used it needs to be covered, sprayed or painted .. unless the whole model becomes a similar colour! Although it contains oil it can be painted with water-based paints or glued using Pva quite easily. It will not warp as much as other types of card when painted. However, if it is used and needs to be made white I would recommend spraying it first with Simoniz white acrylic primer. This won’t eliminate all the colour, but most of it, and more importantly it will seal the surface so that once the primer is dry after a few hours, more water-based whitener such as white acrylic or gesso can be applied without the structures warping.

More about what’s achievable with oiled manilla can be found in Working with stencil card which is under ‘constructing’ in the Materials section.

Acetate

Thin acetate sheet is the most available clear plastic to use for representing window glass. At 1:50-1:20 scale this doesn’t need to be very thick and usually the slightly stiffer version of two commonly sold as A4/A3 sheets in graphics or copy shops (for writing or printing on to use for overhead projection) will remain flat enough.

Cutting
Acetate cuts easily with a scalpel but if need be thicker sheets can be scored and snapped cleanly. If scored lightly then bent on the score line it will stay together as corner, which is useful if trying to represent a glass construction without the messiness of having to glue edges. One can’t mark on acetate with a normal pencil so either the shape to be cut needs to be drawn on paper and used as a template underneath or the surface covered with masking tape and lines marked out on that.

Gluing
If gluing becomes necessary i.e. for attaching to the backs of window frames, small strips of double-sided tape are much cleaner than glue. Superglue for example will ‘fog’ acetate around the area glued while both the ‘cement’ intended for plastics and UHU tend to be difficult to control. A third alternative (but only if gluing acetate to another plastic such as styrene) is the thin plastic solvent available for melt-gluing a range of plastics (e.g. ‘Plastic Weld’ or ‘Extrufix’) which has to be brushed onto a joint from outside. This is generally much cleaner because any excess solvent will evaporate

Plastazote

This is a flexible foam (halfway between hard foam and ‘cushion’ foam) which is available in many thicknesses, densities and colours. Most people will be familiar with the similar, brightly coloured ‘hobbyfoam’ sheets for children which usually range between 1-3mm thickness. The material may also be familiar from exercise or camping mats. Although very soft it can be cut quite cleanly with a sharp scalpel though it can’t be sanded. At an appropriate thickness it can be ideal for curving walls for example, or even for building up a run of curving steps.

Gluing
Plastazote cannot be glued with Pva and even UHU may not be strong enough. A rubber contact adhesive such as ‘Evo-Stik Impact’ will be needed. This has to be lightly applied to both sides, left for a few minutes and then pressed together (UHU can sometimes be used as a contact adhesive in the same way). This has to be done carefully because there is no chance of repositioning. Some brands of this type of foam glue very readily with superglue.

Styrofoam, expanded polystyrene and PU foam

For some structures to be represented it’s easier and quicker to make solid blocks rather than having to construct boxes from a sheet material. Since white card models
don’t necessarily need to be permanent, these light, easily-worked, so-called ‘rigid’ foams may be an option. Styrofoam may be familiar as the light blue sheets (although styrofoam comes in other colours according to different grades or densities) made for wall insulation and commonly used in theatre and film workshops as a rapid carving material. Styrofoam is very finely-celled so it sands very well without crumbling .. using a sanding block it’s possible to get smooth, sharp-edged shapes fairly easily. But styrofoam is of particular benefit for achieving curved, streamlined or organic forms. Regular acrylic or acrylic gesso are best to use for painting it white, since spray paints will dissolve the surface. For more on how to shape styrofoam, including concave as well as convex forms, see my article Shaping styrofoam under ‘shaping’ in the Materials section.

Expanded polystyrene is basically the same substance but formed differently and the cells are much larger. This is made only in white and will be most familiar as hardware packaging material and ceiling tiles etc. This common ‘expanded polystyrene’ is often shortened to ‘EPS’ whereas styrofoam is officially ‘XPS’ meaning extruded polystyrene.

Polyurethane foam .. often referred to as ‘PU foam’ .. is usually found in white or beige, and is often a harder, denser rigid sheet foam than the others. It will resist the solvents in glues and spray-paints, though these will still work well to bond or cover it. Rigid PU foam is mainly available from suppliers of resins and fibreglass materials. But, nearer to home perhaps, some regular foamboards are made with a polyurethane core rather than polystyrene and the paper coverings are easy to peel off cleanly to use the smooth foam as a constructional or shaping material. Examples are Kapa-line foamboard and London Graphic Centre’s Premier Polyboard.

Cutting
These foams are very easy to cut with a knife (or hot wire cutter, except PU foam) and both styrofoam and PU foam can be sanded effortlessly to a smooth, sharp finish even for very small forms. This is not the case with polystyrene because of its much larger cell structure. These tend to break up or can’t be sanded down below a certain size. All can be cut on a band saw, but failing this the best way to ensure a straight cut right through is (as with thick foamboard) to start cutting half way through on one side, take the line round and complete from the other side. Neither a scalpel nor Stanley knife will go very deep so often a sharp penknife, fruit knife or serrated bread knife will serve better. The rough edge produced can easily be sanded smooth with coarse sandpaper on a sanding block.

Gluing
Whereas PU foam is not affected by solvents and can be glued quite effectively with UHU, contact adhesives or even superglue, styrofoam and polystyrene require special ‘foam friendly’ glues such as ‘UHU Por’ or solvent free (I recently found that Gorilla Glue will also work very well since it is polyurethane). Strong Pva wood glue should work with all though takes a lot longer to set. Often it is much easier to tack foam pieces together with double-sided tape which, if pressed together hard enough, will often hold just as well as gluing. Another form of glue which styrofoam seems to accept is spraymount, especially effective if sprayed lightly on both surfaces like a contact adhesive.

Foamed Pvc and styrene

Although foamed Pvc sheet is not so easily obtainable (at least not from art shops) it has excellent properties, being somewhat easier to cut than even some forms of card while remaining much more durable and resistant to warping. The thinnest gauge (1mm) is ideal for delicate cut-outs such as windows and railings. The best brand of foamed Pvc for this kind of work is ‘Palight’, which is one of the smoothest and softest to cut ( or the similar ‘Palfoam’ which is even softer and supposed to be cheaper). Usually the minimum quantity one can order is an 8x4ft sheet (1220x2440mm) which can be quickly delivered, but if one accepts this the price of 1mm or 2mm Palight can work out cheaper than most forms of cardboard. A good online source for ordering/delivery is Bay Plastics www.plasticstockist.com (the 1-2mm white foamed Pvc included in the online catalogue is the cheaper ‘Palfoam’ rather than Palight). Recently though the 4D modelshop in London have started stocking 1mm and 2mm Palight in small (300x600mm) pieces, ideal if you just want to try out a small amount first.

Another plastic, styrene, is also available in sheet form but much thinner (down to 0.25mm) and is also often more suitable than card for slender cut-outs but is denser and harder to cut than the foamed Pvc. Both will allow a certain amount of bending. They are both used extensively in architectural model-making in place of card or wood and are obtainable either from specialist model-making shops such as 4D modelshop or suppliers of plastics (such as Abplas in London).

Gluing
Superglue works very well on both plastics for a quick, strong bond but working with superglue is a practised art because there is no time for repositioning before the glue takes. An alternative when working with these plastics (also generally a much cleaner one) is to use a plastic solvent such as ‘Plastic Weld’. Different from the usual gluing process, the pieces to be glued have to be set up firmly in position first and the solvent is then brushed into the join. Only a little is needed, which is drawn into the joint by ‘capillary action’. There it melts the plastic surfaces and effectively fuses the two pieces
of plastic together. Any excess solvent outside the joint quickly evaporates resulting in a very clean joint. ‘Plastic Weld’ (as with other brands of dichloromethane solvent) works best on styrene plastics but in tests I found that it did work on the foamed Pvc though it took longer to set. If this doesn’t take, the ‘gluing from outside’ method will work just as easily with thin superglue.

For more information on working with Palight foamed Pvc together with illustrative examples click on ‘Palight’ brand foamed Pvc under ‘constructing’ in the Materials section.

I maintain an up-to-date record of the best or most convenient places to get these special materials in Updated sources/prices of specific materials which can be found in the Suppliers section.

Some of the principles of technical drawing simply illustrated – Part 2

In the first part I finished with this drawing of a relatively simple brick structure, which represents many of the fundamentals of technical drawing and is conveyed in a style which is generally agreed to be appropriate to the purpose. The purpose of technical drawing is principally to provide clear and accurate information for making, but in many disciplines the technical drawings also serve other purposes. For example if the subject is a theatre set, or one for a film or a television show, the designer’s ground-plans become essential information used by almost all the other production departments. The set of drawings become a final ‘blueprint’ for the physical/spatial practicalities of the production including for example stage-management and costing. But as I also pointed out, the designer will often find that measured drawing is an essential tool for ‘working out’ the design even in a rough way during the early stages.

complete orthographic information

The object above doesn’t bear much resemblance to a theatre set .. for one thing it’s a solid object rather than a space, so it’s viewed from the outside rather than the inside. However, the principles for drawing a spatial design are much the same. Here is a somewhat ‘stripped down’ drawing of a setting .. part of a derelict house. I’ve omitted text and written measurements partly to focus better on arrangement.

Showing the arrangement of views of a set design on the drawing sheet

The most important and influential feature of a technical drawing is its layout .. the arrangement of views of the object and other parts of the drawing. The views of the object itself are the most important and everything in the arrangement should emphasize this importance, for example the other ‘parts’ such as rows of measurements are kept at a respectful distance and the views themselves are not generally disturbed with text or too many other lines unless there’s no alternative. The arrangement of the views on the sheet is also a prime device in understanding them .. they are aligned with each other so that one can directly relate an elevation, a wall seen upright, with its counterpart on the ground-plan next to it. In this sense it really is like ‘reading in three dimensions’!

Unlike a solid object, a room seen from within can be flattened out like a cardboard box, as above. In this example, at least the three main walls can be laid out in direct relationship to the ground-plan. The other two inner walls also need elevations to describe them but these need to go somewhere else. Ideally these should be positioned where they line-up with and directly relate to something else. This usually means that some measurement lines can then be shared, which helps to reduce the clutter!  When I say ‘line-up’ I really mean ‘have the same spatial orientation as’ and the same relationship to the floor plane. For example with wall ‘D’ I had the choice of either lining it up with wall ‘C’ or wall ‘A’ .. but the relationship with wall ‘A’ is a little more direct and .. very importantly .. it gives more space to include the cross-section view ‘G’ with it.

Just briefly at this point .. because I will be dealing with this in more detail again .. you will have gathered that the overall layout of the sheet is not something that happens all by itself but something that needs to be carefully designed! But often the most effective layout is only apparent after all the elements required have been drawn up! There are various ways of ‘rehearsing’ what to do, and this is a separate subject for later.

I called ‘G’ a cross-section because this is a more familiar and descriptive term but in technical drawing these are commonly just called sections. They show the structure, or part of it, sliced through at a chosen point. This often provides valuable information which is not immediately clear from reading the ground-plan and elevation. In the case of ‘G’ it is just a simple wall of even thickness, which could be guessed from the ground-plan, but at least the section confirms it .. sections are often just there to confirm.

detail of technical drawing showing a section view

Sections become more crucial when the wall has more to it .. i.e. a window structure, door frames, decorative profiles etc .. all of which benefit from being described in cross-section. Everything ‘cut through’ is commonly represented in bold line and filled with diagonal hatching. Close, repeated diagonals make a lot of sense because these areas are then distinguished from most else that’s likely to be in the drawing. But there’s a very human, historical aspect to this custom of hatching .. the lines relate to the marks made in wood when it’s sawn through.

In Part 1 I explained the value of pinpointing both the direction and the position of view for the different elevations by means of arrows surrounding the ground-plan. For the section shown above this is clearer .. the dashed line shows the exact position of the ‘cut’ and the arrow shows the direction from which we’re looking at the cut face. It’s also accepted that what’s drawn in the section is not only the cut surface itself but also what we see beyond it, hence in ‘G’ the lines underneath the hatched area represent the side of the doorway we would see and, above, the broken top of the wall. One could describe the use of letters to identify the views and the link to the arrow symbol a method of ‘labelling’, but in technical drawing this aspect is commonly known as coding.

detail showing ground-plan

The ground-plan is rarely as simple as the one above, especially those that are meant to serve as the ‘master’ ground-plan for a set. These may need to show how other overhead elements, such as flying bars or lighting rigs, relate to what’s on the floor or show the position of floor openings etc. .. but this simple one will serve for the moment to illustrate a number of additional principles in technical drawing.

The ground-plan is also a form of cross-section. It’s not usually stated on the drawing, because this is another of those ‘agreed assumptions’ introduced in Part 1, but the ground-plan is actually a ‘view’ cutting through the whole at about the eye-height of a person in the space. The reason for ‘eye-height’ is that it gives us more significant information concerning doorways, window openings etc .. a viewpoint of ‘most information’ in other words. This is not strictly adhered to because, as I will show, information is often included relating to structures above this viewpoint and it doesn’t mean that everything in the space needs to be faithfully ‘lopped off’ at the same height. If it can be called a rule .. it’s a loose one. But the eye-height view means that generally window openings are cut through at an informative point. If there were proper window frames in this example we would also see these constructions chopped through, which would tell us the position of the window frame within the wall, the thickness of the struts and even the position of the ‘glass’ if the drawing is that detailed. In this example all we see when we look down are the wall edges making the bottom of the window opening and we see these as unbroken lines.

detail showing groundplan relating to elevation

We don’t see those unbroken lines when it’s a door opening because there’s most often nothing there below except floor. But with doorways it’s also customary to indicate that the wall continues solid above the doorway and that’s the reason for the dashed lines included here. This is one example of including so-called hidden lines, which are always either dashed or sometimes dotted, and include properly ‘hidden’ i.e. important structural lines which would not otherwise be actually seen because they’re masked by something and also, as in this case, structural lines which are above or behind the point of view taken by the drawing.

Technical drawing is much like driving a car .. anyone can learn how do it properly because it involves more knowledge than actual skill, though it really does help if you have the right ‘mindset’ for it .. and that at the very least, you’re able to concentrate!

Car driving shouldn’t allow for too much ‘freedom of expression’ .. there are things that have to be done and things that shouldn’t be done. Nevertheless, often the driving style of an individual expresses their personality! Is it the same with technical drawing? How much room for choice is there? More importantly how much opportunity is there to be overtly individual, personal, creative, stylish, decorative .. even anarchic .. while still informing clearly and accurately? This is one of the aspects I’m most interested in and I hope to explore this, amongst other things, in later articles.

 

 

Some of the principles of technical drawing simply illustrated – Part 1

Have a look at this drawing. This is ‘technically speaking’ a technical drawing .. but a naked one! It describes an exact three-dimensional form in just three views, just using lines to represent the visible edges.

Orthographic projection without scale

Technical drawing relies on a number of agreed assumptions: .. that all views are of the same object and only that object, but from different viewpoints and that all views are the same scale; that all visible edges are shown by a line and that we assume those edges progress away from us to form faces which are normally flat and at right-angles unless otherwise indicated elsewhere on the drawing; that there is no perspective used in the drawing. In other words our lines of ‘sight’ do not converge with distance but are parallel and perpendicular (at right-angles to) the face of the object shown; that wherever possible these views are ‘lined up’ with each other so that we can easily relate one to another, moving three-dimensionally in space, as it were, around the object and that most often the ground-plan view is placed at the bottom because it is the ‘basis’ from which all else is elevated.

If you had not read  the above and had never seen a technical drawing before you wouldn’t be able to read much with certainty from these shapes. But when one takes on these agreed assumptions .. known as conventions in technical drawing .. one can start to read it, deducing various things, albeit not with complete certainty yet.

For example, if the bottom view is the ground-plan view then the shape above it is most likely to be the front face because it’s the same length and it explains that the line we see dividing the bottom form is because the block extends upwards at that point. Because the shape to the right of the front view is lined up on the same ‘level’ we can assume we’ve turned on a horizontal axis so it’s a side view and it looks the right width if we compare this to what we see on the ground-plan. We can be certain that we are looking at the left-hand side because this is the only view that fits with the other information we’ve got. We’ve had to do a small amount of mental/spatial visualization to get this! As I’ve said, this drawing has been stripped of all the additions which are supposed to make it easier to read than a visual puzzle .. but nevertheless a certain amount of mental visualization is always needed.

simple orthographic layout

Of course it all becomes easier to interpret if this is added .. a simple 3D line drawing using perspective! Now we can see clearly that we were right about the ground-plan view and the front, although we still have to use our power of visualization a little for the side. Despite being undeniably helpful, perspectival views haven’t been common in technical drawings up to now. This is probably because they take too long to do and are somewhat outside the skills or motivation range of most draughtsmen. It may also come from the purist notion that technical drawings shouldn’t need them, or that it even goes against the rulebook of using a language devoted to strict parallel projection. But nowadays it’s so easy to create perspective views in programmes such as SketchUp and either print or trace them, with or without shading, onto the drawing if there is an available space to put them.

The first version shown above satisfies many of the fundamental strictures of a proper technical drawing .. but of course not all. The most important missing are scale and measurement. Here below is the same drawing .. now almost fully ‘clothed’. Now it is clear what size we are dealing with .. the scale used for the drawing is given in the block of information commonly termed the title block and in any case the measurements are also displayed. We could get all the measurements if we scaled up the drawing 10 times (the scale given is 1:10) but the inclusion of most (often not completely all) of the measurements is a recognised courtesy, so that the reader of the drawing doesn’t have to use the scale ruler for everything. It’s also possible that a drawing can distort during copying, whereas written measurements remain exact. Also, if the scale is there but no measurements given against any lines, how can you be certain that the drawing has been copied at 100%?

basic orthographic drawing with measurement info

These measurements are written in millimetres here, the most common practice for theatre in the UK and increasingly now .. thank goodness! .. in film and television. Notice how the longer, overall measurements are kept a little separate to make them easier to find and notice how heights and lengths are not needlessly repeated. Notice how these ‘clothes’ sit .. comfortably, with some breathing space. The structure itself is still very clear, because the measurement lines are thinner and spaced a little away from the edge of it. Because of this the beginning and end of each measurement line needs to be emphasized, hence the slight crosses. Notice also that the measurements are written to be read in just two directions, from bottom-top and left-right .. rather than circling like ants!

We now also have important written information .. the views are labelled to remove any remaining doubt and the title block has, as the name suggests, a title! The sheet is identified as ‘1 of 3’ and the version dated. All this, and sometimes more, is necessary to keep track of what might become a large batch of drawings within a single project.

But what is represented here is a very simple form which assumes no significant surface detail. I intended this playground ‘street furniture’ unit to be made of brick and chose the dimensions to conform to standard brick measurements, but I wanted a specific pattern. When the designer intends an appearance which directly affects the construction of it, this information must also be on the drawing. I also had to draw all visible sides first in scale just to work out how standard bricks could be laid in the pattern I wanted. This illustrates yet another fundamental .. that measured drawing is not just a final rendition after all design decisions have been made, but an important tool for working things out even in the early stages.

complete orthographic information

The drawing is now starting to look more typical of the densely packed set drawings you may have seen if you’ve had a chance to look at any from theatre, film or television. The perspective view has had to go, to make room for the two remaining elevations as they’re now called, and to avoid any possible confusion arising from ‘back’ or ‘front’, ‘left’ and ‘right’, these are given letters which correspond with clear indications of viewpoint arranged around the ground-plan. This is a more sensible method, because these pointers not only indicate the direction of view but also where the point or rather the plane of view is. The identification and linking of parts of the drawing by means of letters and symbols is known as coding.

Notice also how the measurement lines are now arranged .. overall measurement on the outside with more detailed divisions closer to the object. The line bordering the sheet may seem just a presentation nicety .. but it actually has a more serious purpose. When the drawing is copied it indicates that the whole drawing has been copied, i.e. with nothing missing at the edges.

So, in conclusion to this first part, the ‘principles’ I referred to in the title are firstly those general and often unspoken assumptions I listed at the beginning, plus the following which I’ve tried to illustrate in this article, namely:

.. that technical drawings need four qualities above all else: accuracy (both drawn and written measurements should be correct, precise and in the right place); clarity (both meaning and appearance should be clear and readable); consistency (the ‘language’ used should be used in the same way throughout); economy (the drawing should be uncluttered by needless repetition)

.. that the layout, the arrangement of views on the sheet, is fundamental to the understanding or ‘reading’ of what they mean

.. that technical drawing primarily involves common sense in the way three-dimensional structures are represented in line but that common sense alone is not enough to either create or to read them. The special language of conventions has been developed to assist and it is expected to be used. This reduces the amount of mental visualization we need to employ when trying to understand three-dimensional space from a two-dimensional drawing, but it will always involve some!

.. that there should be no room for misinterpretation, no ‘reading between the lines’. The reader of the drawing should not have to make guesses outside of the agreed ‘assumptions’ or conventions referred to.

.. that the object views themselves should be treated a lot like VIPs or ‘untouchables’ .. clearly defined, with everything else at a respectful distance

.. that technical drawing is not just the ‘final account’ where all the sums are checked but an important tool in developing the design

.. that at the very least the primary measurements should always be written even if the scale is clear and that this is not only a courtesy but also allows the reader to check the accuracy of the copy

.. that the drawing should include all important information that directly concerns the structural making of the object or anything in ‘relief’ but doesn’t usually include details of painted design or colour. It is also generally agreed that the designer’s responsibility is to convey what is seen but not necessarily how it will be made

So far though I’ve illustrated using a simple, solid object which doesn’t bear much resemblance to a theatre or film set .. we’ve dealt with a simple block from ‘without’ rather than a box from within. When something like this is the object of the drawing there are some major differences .. the layout usually has to be different, the ground-plan contains much more information, and there is often the need for sections in addition to elevations, a device we haven’t considered yet. These and other things will be featured in Part 2.

 

‘Model-making Basics’ – main construction

Please note before you start reading this older post that I have long since included a version in my Methods pages, under Making realistic models, which can be accessed above. That version may have been updated or expanded since.

I will be teaching five 3-hour sessions in model-making for the theatre design students at RADA (Royal Academy of Dramatic Art) in London throughout this month. The fact that I’m given five, short time-slots is convenient, I think, because it fits in with the way I usually divide up model-making, at least in practical terms, into five areas; .. main construction, fine construction, modelling and shaping, creating surfaces and painting. I’ve delivered these sessions many times before but I’m always driven to ‘re-evaluate’, so this time I’m using that as an opportunity to write up my preparation for those sessions here. The next five posts are therefore geared towards the specialities of making theatre set design models, but many of the points apply in general terms to work in other disciplines

I find the last four areas relatively easy to advise on, perhaps because they can be more easily illustrated, but I’ve always had some difficulty sorting out what I should say for the first. It’s not that there aren’t a whole many detailed practical tips to give .. the ‘hands-on’ part of construction is a methodical, step-by-step process which can be easily broken down into handy points .. but I think the difficulty has come from my suspicion that constructional ability in this case may rely more on ‘ways of thinking’ than ways of doing and that these may be harder to help with!

Model-making is a very practical subject, in that it involves the handling of materials to produce a physical outcome. It could be taught purely from that practical standpoint .. focusing on the materials and tools needed, and the methods or techniques employed to make specific things. But model-making is also part of the act of designing .. a means of assisting the designer’s ability to pre-visualize. It’s not just the necessary visual embodiment of ‘worked out’ intentions (necessary because others have to see them) .. it’s a major part of that process of ‘working out’! Because of this the ‘materials and tools’ for effective model-making are not just those which can be conveniently placed on the table; they include the more fundamental attitudes, areas of acquired knowledge, and ways of thinking/or seeing/or organizing which underly the whole process of work.

For this reason I’ve arranged these notes .. going from the general to the specific .. firstly under the heading ‘General approach’, which is more about ways of thinking; followed by ‘Practical guidance’ which turns more towards ways of doing; ending with more specific ‘Working examples’ which aim to illustrate how these ways of thinking and ways of doing combine ‘at the worktable level’.

What do I mean by ‘main construction’?

I mean the ‘big things’, starting for example with the theatre model-box and then the main structures of the set .. the ‘principle architecture’ in other words. This includes elements such as walls, platforms, seating banks and staircases, but also curved set elements, raked floors and open frameworks such as scaffolding. Although many are quite simple shapes, just to look at them, it is not often obvious how to make them .. or perhaps more correctly, how to start on them.

GENERAL APPROACH

Leading with the head

It’s a favourite catch-thought of mine that success in model-making lies ‘more with the head than the hands’, meaning that it rests upon thorough planning or ‘thinking through’; that nothing reliable can be achieved without researching the right information; that problems are solved by a mixture of focused and divergent thinking; that one can only be as good as the materials one knows about. Against this though, one has to weigh up the fact that a great deal can only be learned by doing; that there’s a limit to what can be visualized beforehand; that being ‘hands on’ with materials will suggest and inspire different and unforeseen ideas!

The ability to ‘see’ ahead .. to actually ‘work’ in a very practical and realistic way, but ‘in one’s mind’ .. is the first and most important tool that the designer reaches for! Everyone has it, because otherwise none of us would be able to rehearse a difficult conversation, write a shopping list or plan a journey! Undoubtedly some would seem to be ‘better’ at it than others .. but it’s more a case of some being better at aspects of it. Some can let their imagination roam further than others; some may not wander so far but can ‘see’ what they have in more detail; some are good at shutting out what they don’t want or need to see in order to focus. My point here is that it’s important to recognise which of these you are, acknowledge your strengths and question whether you can improve. Although the second point on this list is the accepted way of dealing with any deficiency, or safeguarding against being misled, there is still a great deal that we either don’t have time to test or don’t realize there’s a need to.

Probably model-making taxes one’s ability to plan ahead in this way more than most other things I can think of, because there are so many variables! The materials chosen need to be reasonably durable (though not to last forever); affordable; obtainable when needed; ideally within one’s ‘comfort zone’ in terms of familiarity or technical ability; but perhaps not so familiar or comfortable that they engender predictable results i.e. better if they’re a little challenging or even inspiring!. Similarly one’s methods of working with them need to accord with the above; they must be affordable timewise; they must be flexible enough to give freedom to the development of the design; they must keep the sense of discovery alive! The builder’s mantra ‘strongest, neatest, quickest and cheapest’ already gives many things to juggle with, but ideally ‘most creative’ should also be added.

Can one’s ability to visualize be strengthened? Is it possible to ‘see’ or to foresee more? Absolutely! .. by feeding the mind with better information for a start! The quality of what comes out depends on the quality of what goes in. But it doesn’t start with ‘quality’ necessarily .. it starts with quantity. The more we’ve seen in our lives, whatever the sources, the more we’ll be able to visualize. Then, the move towards ‘quality’ begins simply with questioning; the act of interrogating what it is we’re seeing, where it might come from, how good those sources are and what visual assumptions we might have been making.

For example, it’s hard to visualize the concept of a ‘circus’ on stage (i.e. to shape it in our minds in terms of what general actions are going on, what sort of background the performers are seen against and what they look like) if we’ve never seen one before. And yet we are all required to do that in an instant, just to establish where we are even very vaguely, as we read a novel or a play text. I’m willing to bet that although probably very few people nowadays have actually been to a circus, we will all have some kind of scene-setting image which is pieced together from various sources .. storybook images seen as a child, related scenes from other plays or performances we might have been to, scenes from films or television. When we are reading a novel for enjoyment we just need to set the scene for ourselves vaguely, without even being really conscious of it, just to get through the story and unless the writer refines or directs our vision with a more specific description, that image of ours has to serve. It probably doesn’t matter how incomplete that image is or how silly the sources are, as long as the writer is doing their job properly in directing our attention to what’s important. Now, compare that to reading a play text with the view to designing it. Ideally, our first experience of the material should be exactly the same! Ideally our initial reading should be just as free, ‘unselfconscious’ or unbiased .. initially that is. It’s a subject for another discussion whether that’s at all possible for us of course, but then afterwards .. our reading has to become very selfconscious, biased and critical. We do then have to examine that scene-setting image we’ve formed of the circus and subject it to questioning .. what are we really seeing; how complete is it; where have those visual impressions come from; which of those are coming from the text; what more do we need (whether in terms of quantity or quality) to start ‘building’ that image for real?

The process is similar in many respects when planning the making of something. We may be able to visualize the whole process in some detail, if we’ve done it or something very similar before. Again, the more we’ve made the more we’ll be able to realistically visualize making. If not, we can still piece together a ‘provisional’ visualization from general things we know about materials and ways of making, mixed with some more specific ‘snap-shots’ of things we’ve experienced which could be related. So for example we may have the general ‘circus’ image, but then we have to start ‘making it real’ by questioning .. can we trust what we think we know; what bits don’t we know, and which can only be found by starting or experimenting; what more do we need to start that?

Sketch model-making

Sketch model-making .. in other words making quick, rough mock-ups to get a better idea of how something is truthfully likely to look .. is a standard and, I believe, indispensable practice in theatre design! One could say that the less you’re confident in your powers of visualization the more you should do this. But because the sketch model has the other function, more a communicative than a freely exploratory one, when working with the director for example, its uses can get a bit confused. You, as the designer, may view the sketch model properly as the closest approximation of ‘something yet to be properly defined’, whereas it is difficult for the director to look at it as ‘blurred’ in the same way you do. You have to be prepared for the sketch model being judged on exact face value and you need to be clear about what you consider purposely vague and what isn’t. The other thing is, ‘sketch’ or ‘rough’ in this context should be understood more in terms of ‘quickly made’ or ‘not precious’ rather than necessarily ‘inexact’. Scale for example needs to be as exact as you can manage, even in a sketch model, otherwise nothing specific can be learnt from it.

Defining with ‘measured’ drawing

After basic structures have been tested in the sketch model and are ‘approved’ they often need to be further refined in terms of exact dimensions or, more understandably, the method of making them, and it is better to work these out on paper first. An example of the first might be a flight of steps which it might be acceptable to generalise roughly in the sketch model but which need to be checked on paper (see ‘Working Examples’ below). An example of the second is a raked floor, which could be improvised in the sketch model just by propping a piece of card over an object. To make the rake properly the height at the highest point needs to be measured together with the length along the floor from the lowest point and drawn up on paper (as a long, thin triangle) to get the gradient. The gradient (the slope) is the amount the rake rises compared to its length, so for example a gradient of 1:8 (as it’s normally written) rises one unit of measurement for every 8 of those units along. The best way to make a stable rake is to cut a number of those triangles and glue them at regular intervals to the underside of a sheet.

Knowing when the planning should pause

Models can easily go too far into unnecessary or gratuitous detail and it is the same with planning. It’s not entirely true that ‘There is no such thing as too much planning’. There are dangers, both in terms of scrutinising the present in too much detail or trying to look too far into the distance.

For example, some people take refuge in planning for much longer than necessary because the part that follows either involves more effort or it involves more ‘unprotected’ engagement with the unknown .. exactly what one should be doing in fact! Some people are such good visualizers (those who can see quite far ahead in detail, ‘rehearsing’ doing things in their minds and even mentally picturing the outcomes) that they’ve worked everything out from start to finish, leaving themselves seemingly nothing more to discover. Planning is supposed to be logical and rational, but it can also become paradoxically unrealistic! It often delivers the ‘ideal’, based on a string of assumptions
about what one thinks one can achieve and when, setting up an end-goal that is
often as far removed from reality as it can get! That kind of planning usually only
results in frustration and disappointment!

Instead, the kind of planning I’m advocating is ‘episodic’ rather than ‘epic’! Make sure that you’re always planning enough in hard practical terms (i.e. that you have the basic materials, tools and information) to get you through the next few practical steps. Of course it’s important to have a notion of the bigger picture, why it is you’re doing things and where it could all lead, but don’t allow this picture to overwhelm the present or close your mind to the changes that each step could generate. It may not work for everybody, but I seriously believe from my own experience that if you keep the conscious mind reasonably focused on the practical/immediate, the subconscious mind is left to work calmly on the ‘bigger ideas’ and deliver them when needed.

Knowledge of materials and where to get them

As I’ve said, as a maker you’ll only be as good as the materials you know about! But, as with everything seemingly, there are points and counterpoints .. to accommodate the innate differences in people and their situations. I still hold that the key to solving most model-making challenges is to at least know of the existence of a wide variety of material options. Thinking purely of my own experience, I can’t imagine what quagmire I’d still be in now if I hadn’t found out about and played around with Kapa-line foamboard or foamed Pvc sheet! It’s not just that I am enabled to do things with these materials which would either be impossible or impractical with others. It actually needs far less technical expertise to get results with them than with the others, and they suggest new ways of working that I wouldn’t otherwise have thought of. I’ve got to the stage where I can comfortably make almost anything imaginable from either foamed Pvc, Kapa-line foamboard, blue Styrofoam, strip styrene, obeche wood sheet and Polycell ‘Fine Surface’ polyfilla. This is my point though .. I’ve made my selection from exploring many! It pays to be divergent and explore all sorts of different options but after a while it also pays to converge upon a chosen few that one ‘knows’ particularly well.

Learning about new materials isn’t difficult or particularly time-consuming! You can dip into the articles here, or browse through the ‘Lexicon’ for example .. or countless other websites .. not to mention books! But probably an even better, more memorable starting point is just to go and see what an outlet like the 4D modelshop in London has to offer.

4D modelshop London

Just spending the time to look systematically at the range they have, including many options for ‘preformed’ structures as above, can be quite an education in itself and it means much more because you are actually seeing and handling things.

Thinking in terms of ‘base layers’ and ‘add ons’

Structures, particularly architectural ones, often have a defining shape which I call the ‘base layer’ meaning the most significant outline, although this may not be located literally at its base. This is usually the place to start when sorting out how to construct the structure. For example the proscenium wall i.e. the front of this theatre model-box is a relatively simple structure which can be put together in layers.

theatre model-box

That is, the ‘base layer’ is a cut-out following the exact dimensions of the proscenium window with a thick strip built upon the front of it and another strip fixed to the back of it to complete the proscenium arch depth. It needn’t be more complicated than this and if you don’t like the visible join (indicated by the shaded strip on the drawing below) this can be faced with black paper. Most wall structures turn out to be just a base layer with additions one side or the other (speaking in terms of making them in a model! They may be built differently in reality).

model-box pros detail

I made the wall pieces below to illustrate how seemingly involved wall surfaces can just be a collection of boxes on a base layer. For example with the simpler one on the right it’s easier to cut a main wall piece as a continuous strip and stick the protruding part over it as a box if the construction isn’t going to be seen. It’s stronger anyway, it’s actually quicker, and the extra material hardly makes a difference in cost. It also means that, if need be, individual sections can be more easily kept separate for painting.

wall add-ons

Keeping built elements as separate as possible until they’re textured or painted is quite an important general consideration in model-making .. one of the important points on the ‘planning ahead’ checklist. How separate, or rather where exactly to draw the line in terms of having a lot of separate bits, is something one can only learn by doing. Similarly, the way one chooses to create a surface may add a lot to the thickness, so it also needs to be thought about at an early stage .. unfortunately far too early in many respects!

If you’re not good with measurements .. do something about it!

My theory is that it’s the creatively divergent thinkers that make the best theatre designers, and quite a few of those that I know or have taught have difficulty with the ‘number processing’ aspects of the work (although I’m sure it doesn’t follow that if you’re good with numbers you’re neither creatively divergent nor a good theatre designer!). I also suspect that this difficulty arises, not because those people are unable to think logically or systematically enough or that they’re not mentally organized, but rather it’s something to do with not being able to retain information that has almost no emotional or visual reference.

Many people get by without undue stress, but if you feel you are not or if this is damaging your work, you have to take positive, compensatory action because otherwise it will always stand between you and your confidence! First of all you need to focus on what exactly it is that you find difficult, and it could be just one, a few or a number of things. Is it that you find it difficult to retain numbers in your head long enough to work with them or that you can’t ‘see’ them in your head sufficiently as quantities for adding together? Or might it partly be the way measurements are written, for example?

I know for a fact that my problems with numbers are because I don’t retain them, they’re not ‘memorable’ in my head for more than an instant if they remain as just numbers. I’ve found some ways which have helped .. I write numbers down fairly bold on pieces of paper so that there’s also the sense of the movement I’m making with the pen; I say the numbers out loud and often retain the sound of my voice saying them etc. I think I’ve also assigned some kind of ‘character’ to each of the 9 single digits, in a very vague way, to help with both differentiating and remembering them. I always try to transfer a group of measurements I might need (ideally no more at one time than can be fitted with large writing on a post-it) to lie directly in my field of vision while working, as below. This has helped a lot, because at times it’s felt as if they can disappear somewhere within the 2metre journey from drawing-board to worktable!

keeping track of measurements

Cutting needs to be learned and practised!

In my experience a standard surgical-type scalpel (i.e. Swann-Morton No.3 handle, on the left below) is by far the best knife to use for model-making work. The best blade to use with it is the ’10A’. It’s the most general-purpose but also the most precise. The scalpel in the centre has been fitted with a rubber cover, which is much more comfortable and makes the knife much easier to control. Unfortunately I have only seen these on sale in Sweden! The knife on the far right is not a ‘scalpel’, but is another very common type (especially with hobby or ‘craft’ shops) and is not as good in a number of respects. In the first place the flat orientation of the scalpel helps with controlling it, compared to the round barrel. Secondly the scalpel blade is more firmly supported and this support extends further towards the fine tip, as you can see. The blade in the other knife will tend to flex and wobble too much, especially when pressing hard. Lastly the blades for this knife are more cheaply made, not as sharp and .. I think .. not as easy to find. Often the blades are a little thicker than scalpel blades and this can make a noticeable difference when cutting because they produce more friction! These knives are not necessarily cheaper than scalpels (at least they shouldn’t be if the shop prices fairly) and in any case .. why should one think about saving just £1 or so on a tool which will last and which one’s using all the time?

fine cutting knives

I’m sure I must have said many times that there’s a whole little book to be written just on cutting with the scalpel, hence the devotion of space to it here! At the very least, anyone not practised in cutting needs to consider it a subject in itself which needs to be rehearsed, explored and ‘made peace with’ as far as possible before being able to do anything else. Scale model-making of this kind is so dependent on being able to cut a straight line in the right place. It sounds so simple .. but it’s not! It can’t just be taken for granted that everyone will be able to do this with just a little practise and often people who could otherwise become excellent makers are put off the whole idea of model-making just because this one aspect is never really ‘conquered’. Here are a few guidelines:

If you’re using a material for the first time you should take a while just to get a sense of how it cuts i.e. starting with how steady the metal ruler will lie on it, how resilient or giving the surface is to the initial pass with the blade, how many passes are needed to cut through cleanly without excessive pressure. If you don’t feel confident that the ruler will stay where you’ve put it, you either need a better ruler or you need to do something so that it will grip better. Flat steel rulers will certainly need a strip of masking tape on the back at the very least but sometimes this isn’t enough so pieces of double-sided tape could be added provided they won’t damage the material. If left on permanently they will lose their tack over time but will still improve the ruler’s grip.

You should also rehearse what it feels like to run the tip of the blade steadily along the metal edge, without necessarily cutting at all. It should feel locked there, able to run freely along but not to depart from the edge. The scalpel blade is slightly flexible and it should be pressed hard enough into the metal edge so that it flexes just a little.

There are no special prizes for being able to cut through in one go! The first pass with the knife should simply be to establish a guiding ‘scratch-line’ which only has to be deep enough to be found again with the tip of the blade. One’s focus at this stage should be more on the edge of the ruler than the material to be cut. Pressure comes afterwards, once one’s established this line and it shouldn’t matter how many passes it takes to cut through. If you’re having to press so hard to get through the material that you can’t control the straightness of the cut anymore it means one or more of the following:- the material is too tough or thick to be cut with a scalpel and you will have to try with a Stanley knife or failing that a saw; you can turn the sheet over and try cutting in exactly the same place on the other side (when cutting thick materials it’s the friction on the blade that becomes the problem and starting ‘new’ from the other side often works); or you need to build up some more strength in your hand and arm through practise.

If, for whatever reason, the ruler moves while cutting, don’t try repositioning it by eye. Put the tip of the scalpel in the beginning of the line you’ve started and slide the ruler up against it. Holding onto that position put the tip of the scalpel in the end of the line and move that end of the ruler against it. You might need to adjust, beginning and end, a couple of times.

It’s worth asking yourself consciously whether you’re working under the best conditions or whether they can be very simply improved? For example .. is the cutting matt flat and smooth or is it more like a Jackson Pollock? Can much of this be scraped off? Is the cutting matt really flat on the table or are there small bits of scrap under it? Have you really got enough proper light to work by? .. in particular, can you see your marked line clearly enough or is the edge of the ruler casting a shadow over it?

Usually with thin materials (i.e. up to 1mm) the angle of the cut edge, in other words whether it’s at a right-angle to its surface or not, doesn’t matter so much. Generally, if one’s holding the scalpel normally it will be fine. But if over 1mm thick it can matter, especially if the edge is to be glued on something else at a right-angle. If using foamed Pvc or wood it would be normal practice to straighten the cut edge using a sanding block and this will even work with foamboard or some types of cardboard. Even so it’s best if one gets used to holding the scalpel upright in the first place. It’s much easier to maintain the knife upright if you can actually see the angle while cutting, i.e. by cutting the line in the direction straight ahead of you rather than side to side. Especially when cutting longer lines it’s usually better to stand up for this so that you can reach over the work properly and use your own body as a ‘measure of uprightness’.

Changing the scalpel blade (i.e. when it gets blunt) should be the easiest thing in the world (if the world were fair) but unfortunately it can be a bit of a nightmare with a new scalpel handle, because the fixing is often too tight at first, making it hard to slide the blade either off or on without fear of injury. The only way to solve this (until it wears down a little with use!) is either to use pliers to get the blade off and on, or to file into the blade channels a little. Below is not intended as a solution to this, but it does help to know that blunted blades needn’t always be replaced. They can quite easily be sharpened on a piece of ‘wet and dry’ or Emery paper (usually best 600-800 grit) by stroking the blade firmly at a shallow angle, a few times each side. It’s usually only the very tip of the blade that gets blunt so it’s best to focus on sharpening just this small part, flexing it a little into the paper.

sharpening a scalpel

PRACTICAL GUIDANCE

Keeping track of what is being glued to where

A common exercise for beginners is making a complete 6-sided cube using flat card. All sides and all edges of a cube need to be perfectly equal. Does this mean that the first task is to cut out six perfectly identical squares? If your answer was ‘No, of course not! Some need to be a little smaller’ you’re ok and on your way, but if it was ‘Yes’ and you really can’t see why this could be wrong you’re going to be challenged!

The fact is that when pieces of card are glued ‘edge to face’ for things like this the thickness of card becomes part of the measurement, so some pieces of card need to be cut shorter to allow for this. Working out the measurements needed and best method of assembly for a simple cube can be challenging enough, so one gets an idea of the forethought involved in making more complicated constructions. The only way to keep a mental grip on this is by drawing up and noting clearly on the drawing what goes on where .. or at least what you plan to do at that stage. Consider the drawing a master-plan .. take time over it, treat it with respect, put it up on the wall if you can, update it immediately if you make changes. Don’t be afraid of making it multi-coloured if that helps .. this is not prissy!

Labelling cut pieces

It’s an annoyance I used to experience countless times! .. looking at a mass of cut pieces on the cutting mat having lost track of which of them were ‘pieces’ and which were off-cuts. There was often one that I never managed to find again, probably because I’d mistakenly cut it up to make something else. These pieces need to be labelled as soon as cut, including the record of where the top or bottom is etc. You can use bright post-its as below; these are cheerful and important looking, but they could come off. Another way is writing on a piece of masking tape.

labelling pieces

Getting and ‘keeping’ right-angles

In the first place, never assume that a sheet of card (or especially an off-cut of card) has perfect right-angles even if it’s straight out of the shop. These need to be checked first. Laying a set-square over the corner is often the way that people check but because set-squares are usually transparent one has to strain the eyes a bit to see this and it may not be sufficiently accurate. Using a try square is a clearer way of checking, not least because one only has to look at one edge rather than two.

using a try square

‘Setting up’ for gluing

Almost all glues are meant to be used as sparingly as possible, because bonds between things are always stronger the tighter they can be pressed together, regardless of how thick or ‘gap-filling’ the glue may seem.

Whichever materials are being used and whatever the properties of the glue (i.e. whether fast or slow), gluing needs to be prepared for. If the glue is slow-setting such as Pva wood glue, pieces need to be held (ideally fairly tightly) in position until the glue ‘grabs’ sufficiently. With a good quality wood-glue and normally-absorbent card this will not be long, perhaps just a number of seconds. The glue takes longer to set completely but the piece will stay together in the meantime and can be moved .. it just shouldn’t be put under any pressure for a while.

If on the other hand a fast-setting glue such as superglue is used this will not offer the same margin for repositioning so the ‘set-up’ is important in this case as a means of making sure that pieces can be positioned ‘right first time’. I use metal blocks (steel offcuts) to glue pieces against. For example, below I placed the edge of the base piece up against the block, put some glue on the edge of the upright piece and just had to slide it down the block surface into position. This ensured that the upright piece was glued in the right position along the edge of the base piece. Metal blocks like these can be bought from metal retailers such as www.metalmaniauk.com for just a few pounds (see Lexicon entry ‘metal construction blocks’).

using a right-angle block

Another way of setting things up, involving a different technique of gluing, is offered by the fact that thin liquids will be drawn into tight gaps (what’s known as capillary action). This means that difficult-to-glue pieces such as the curving sheet below can be set up in the correct position and the glue is introduced along the joint afterwards. Here a thin plastic solvent is being used to glue styrene plastic, but thin superglue can also be used and this can also work with card.

gluing from outside

The scaffolding construction below needed a bit more preparation to set up the pieces for gluing.

scaffolding model

The scaffolding was made from 2mm acrylic rod, superglued together and then painted to look like metal. The individual pieces of rod needed to be taped onto card to hold them in position while glue was introduced into the joints.

scaffolding before painting

Because the structure was three-dimensional I had to make the special foamboard construction below to glue it on. I needed to be careful not to apply too much superglue to the joints otherwise it would have glued the scaffolding to the card. After gluing I just needed to remove the pieces of masking tape and slide the scaffolding construction off the supporting form. Specially made supporting forms like this are known as ‘construction jigs’.

gluing jig for scaffolding

Below, some of the side poles needed to be glued afterwards and these also needed small temporary supports to assist gluing them in the right place.

detail of jig for scaffolding

Faking surfaces

This is not a sudden jump forward to talking about how to create surfaces although, as I’ve mentioned, one does have to include certain decisions about them from the beginning especially if they’ll add to the thickness of structures. What I mean here is that if for example I need to make a structure that looks like real wood it often makes sense to use real wood (if the scale looks right), but it doesn’t make sense for me to construct in wood because I’m not familiar with working with it in a constructional way. I have confidence in being able to construct whatever I want in Pvc plastic, so the best answer for me is to construct in plastic and thinly clad with wood. This has many advantages; it cuts down on cost, it gives more control over the appearance (type of wood, staining, direction of grain), and it doesn’t require special tools or woodworking methods.

cladding in wood

Dealing with curves

By this I mean two different tasks .. firstly being able to cut circles or regular curves in a flat sheet, and secondly building structures such as curved walls. As for the first, I could just say that, really, cutting out a nice, smooth circle which you have drawn with a compass is just a matter of practise! One really does have to have a feeling of ‘steady flow’ to do it properly and it usually doesn’t work if you’re agitated. You need the practise to get an idea of how your hand behaves in that situation; how much you can rest it on the material but still slide it along smoothly; whether it’s easier holding the blade upright or more oblique; whether it goes more smoothly using a sharp blade or a slightly blunted one; whether you need to be sitting down or standing up over it. All of these, and more, are considerations and only you can discover what works best for you.

But I can suggest other things that are likely to help in any case, and these are: if you can, find a lead for your compass that’s slightly harder than the standard supplied i.e. ‘H’ rather than ‘HB’ to give a sharper pencil line or, failing that, sharpen the end to a fine point using a nail-file; as with most other cutting, make your first pass just a gentle guiding cut on the surface to be able to move more freely without having to press down too much; if possible use a different, i.e. softer or less fibrous card for these circles than you’ve used for the rest of the model and don’t even attempt to cut circles from the thick, dense, hard recycled type!

But if you’ve tried and tried again, and you’re still not getting anything like a circle, there are other things that could help. There are so-called ‘cutting compasses’ like the one below which usually don’t cost too much. They have a very small blade in place of a pencil lead. I can guarantee that you won’t be able to cut anything like mountboard right through with them (it’s impossible to press down enough while moving round) but you will be able to make a good, precise guiding cut. You will then need to trace this with the scalpel. Another way of making a good guiding mark is if you can rig up your compass with another metal point (in place of the lead). Art or graphics shops often sell spare points.

cutting compass

The photo below illustrates how one would normally approach building any curved structures in the model, whether concave (curving inwards) or convex (curving outwards). If card is being used it needs to be a relatively soft one, such as mountboard, and .. this is important .. not too thin, i.e. 1.5mm mountboard is usually fine. You may think that it’s going to be easier to curve thinner card, but it may not keep its shape well enough. After getting a reasonably good idea of the length of card you need to complete the curve, cut a piece to size but with some extra length (I’ve used ‘foamed Pvc’ plastic below, because I wanted these demonstration samples to last and I prefer foamed Pvc over card anyway). Make repeated and regular-spaced ‘half-cuts’ (i.e. not all the way through) from top to bottom. The closer these lines are to each other the better, and the smoother the curve, but it depends how much patience you think you’re going to have. Ideally each cut should have the same depth (or rather they’re cut with the same pressure) but this is very difficult to regulate. If all goes well the scored card should bend easily and evenly, and the strips act as reinforcement keeping it straight vertically.

making curved walls

Curves almost always need a support behind them to keep them in shape. This can vary according to what you’re prepared to do or the amount of space there is behind, from just bending a piece of wire and attaching it to the back, to the supporting construction I’ve made here.

fixing a curved wall in place

Here I am gluing it into position against the top and bottom support curves in stages, starting by fixing one end firmly, pressing it tight and then introducing thin superglue into the seam from outside (the technique of ‘gluing from outside’ illustrated earlier). I’ve made the curved piece longer than necessary because it’s easier to handle it this way and it’s easy enough to trim the end off once it’s firmly in place. With this method the score lines are always visible, whichever side you’re facing, but the way to eliminate this completely is to cover the curve with another surface of strong paper (or thin plastic), preferably using spraymount to glue it evenly.

There are other sheet materials which can be used for creating curved surfaces without the need for scoring. Thin (i.e. 0.5mm) white styrene sheet is very bendable (available from model shops such as 4D). Also available from 4D is a special form of soft cardboard called ‘Finnboard’. This is made from pure wood pulp and if it is soaked thoroughly in water it can be bent into a curve without creasing. It needs to be kept in that curve while drying though i.e. by securing it around a bottle or similar former.

Finnboard bent into a curve

WORKING EXAMPLES

Steps and staircases

I often use the example of making a unit or run of steps to illustrate many of the issues of ‘main construction’, and in any case the question of making stairs is always coming up. I’ve adapted this account from my book ‘Model-making: Materials and Methods’ but I’ve also extended it to include a method for open steps and a basic approach to making a spiral staircase.

Even with a simple staircase unit it will become clear after a bit of thought that certain things need to be found out before starting .. firstly the standard acceptable proportion (i.e. height and depth) for a step, the height you want your staircase to go to and the distance along that’s going to be needed to get there. See ‘Common sizes of things’ in the ‘Methods‘ section for more on standard step measurements, but let’s say that each step needs to be 200mm high (known as the rise or riser) and 250mm deep (or along, known as the tread). If you want the flight of stairs to reach 4 metres you could use something similar to the ‘counting on fingers’ method for working out what length on the ground this will come to i.e. dividing 200mm into 4 metres to give 20 and multiplying that by 250mm to give 5 metres length. It might have been simpler and perhaps quicker though to think of the step proportion 200:250 (which is the same overall) reduced to 1:1.25 and simply multiply 4 metres by 1.25.

Once the dimensions are sorted, two identical profiles (side views) need to be drawn up and cut out. These will become the sides of a freestanding stair ‘box’. Believe me, it’s best and easiest to make it this way, even if the stair itself is going to be enclosed between other walls. There’s nothing harder than trying to construct something in mid-air! A lot of construction challenges are solved simply by taking the time to rig up a support to glue upon. This can be left if it’s not going to be visible, and if it has to go it can usually be easily cut away afterwards.

Drawing up steps

The best thing to do is to draw up a complete grid (above), composed in this case of 200cm x 250cm rectangles. The try square comes in handy for this, or the card can be taped to a drawing board. The grid helps in keeping lines straight and spacing regular, and the extended lines will help when positioning the ruler to cut against later (it’s hard to keep to parallels when all you’ve got is thumbnail sized lines). Maybe it’s the only way of doing it anyway, it’s just that I’ve seen attempts at steps that appear to be more ‘organically improvised’ shall we say! In the past I often drew up a larger grid so that I could make use of the cut zig-zag for both profile pieces. But I have to say, they rarely matched completely. The following three photos were taken for the book by Astrid Baerndal.

first stage of step construction

After checking for a reasonable match, the profile pieces need to be fixed in a position where they’re upright, the right distance apart, parallel and ‘in sync’. The easiest way to do this is to stick them on a base cut to the proper size. This will add a little extra height though, so to compensate the same needs to be taken off the base of each profile. The right-angle supports glued inside are essential to make sure that the profiles remain properly upright.

adding risers

For the next stage above I’ve used coloured mountboard to make it clearer how I’ve chosen to fill in the steps because there could be a number of ways. Here I cut a strip of card exactly the right width for gluing between the uprights and cut all the riser pieces from it. I then inserted these in the right positions using Pva wood glue to allow for some repositioning. In this case the flat of a small metal ruler was useful for pressing them level.

completed step unit

In this example I’ve finished the unit by cutting another strip of card, this time the full width between the outer edges of the uprights, so that the treads can be cut and applied on top. It only remains to give the steps the required surface, whether that’s concrete, wood or carpet etc. Whatever goes on top needs to be kept reasonably thin, because it will change the dimensions slightly (but this difference will only be noticeable on the top and bottom steps of course because if the steps get an even treatment the proportions of the others will remain unchanged).

Speaking of that, you might have noticed that whereas I was careful before to adjust the height of the two profile pieces to allow for the extra card base, I didn’t say anything about the extra thickness of card which has been added to make the treads. Doesn’t this mean that the steps are slightly .. i.e. 1.5mm .. higher than they should be? In fact they’re not because in making this I fortunately anticipated that and sliced a total of 3mm off the bottoms of the profiles before gluing to the base piece. I left that fact out to make this point .. does it really matter? The answer is .. no, it’s not a major error if levels don’t quite match up in the model but it’s generally better if they do. Pride in getting the model right, i.e. in making it look exactly as you want the real set to be built, should extend to all details. Things like miss-matched joins, warped surfaces, ragged areas or spots of glue are only human, but even these little things can prevent a good model from being fully convincing, rather like tiny errors of continuity in a film which are enough to wake us up from the illusion.

But what if one needs a run of steps which are not boxed in, for example if they’re clear underneath or as part of a metal fire-escape? The general method is fairly similar. For example the first stage is to draw up the necessary grid as before to get the right proportions and spacing.

making an open flight of steps

But then instead of cutting out a profile wall one needs to cut a profile strip, as above.

setting up for gluing

The two of these then need to be temporarily secured to something so that they stay ‘upright, parallel, synced’ etc. Above, I cut a strip of 5mm foamboard to the right width, checked that this was straight, and secured the profiles to it using small strips of double-sided tape. Below this is the strip for the treads waiting to be cut. I’ve used 1mm ‘Palight’ foamed Pvc for this construction, using superglue. After all the treads are glued in place the piece can be easily loosened from the foamboard support.

completed steps

I’m asked a surprising number of times, mainly by theatre or film design students, how to go about making a spiral staircase in a model. Maybe it’s not so surprising because it’s a beautiful form, and is often the only attractive solution within a confined space. But having to build it in model form with at least a semblance of its grace will tax ingenuity and patience to the limit! I’ve been quoting the spiral staircase from the beginning of my teaching, as an example of instances where model-making interferes with design. So often spiral staircases are ditched in favour of something easier to make!

What follows is a very basic ‘schema’ for a generalised look .. it doesn’t answer every detail or for every type but may provide a framework method to build upon or adjust.

spiral staircase plan

The drawing above represents what one has to do first, that is, to draw up a groundplan view to scale, establishing the size of the staircase and the shape of the treads. As for the question of size, and especially if this is a design intended to be built and used, one must take into account the building regulations which, in the case of spiral staircases, advise that treads must be at least 26inches (c. 66cm) in width. The same regulations advise on how deep (horizontally) the treads should be at their middle point and I won’t go into detail here but good advice can be found on sites such as

http://www.accentironwork.com/building%20code.html

This drawing can form the template for cutting out the individual treads later (if copied and tacked on with repositionable spraymount), but it is also essential for working out how many steps will be needed for the height required. For example if the staircase needs to reach an upper level of 3 metres, 14 steps will be required assuming that (as I have done here) that each step rises 200mm and that the last step is to the platform. By starting at the top step (aligned as it will be with the platform edge) and counting the progresssion of steps downwards on this plan you can find out how the spiral ends (or rather how the staircase begins). The direction of entry onto a staircase is something that can’t just be left to chance (it has to be appropriate to the way it’s going to be used)and if it needs changing there are two things that can be done. The penultimate step (i.e. the last tread of the staircase itself, before the step up to the platform) can be extended if there’s a gap and usually it won’t be noticeable. Alternatively (although not so usual) the rise of all the steps can be adjusted, because there’s a reasonable leeway from 15cm minimum to 23cm maximum.

marking up spiral staircase

marking up a spiral staircase

What staircases of this more contemporary type have in common (i.e. those usually made of metal, often with open steps) is a round central pole, as above, and this is the starting point for construction. This needs to be found first, so that its diameter can be entered on the drawing. If you’re fortunate enough to live within reasonable distance of a materials shop such as 4D modelshop in London there is such a range of dowels and tubes that one can usually find exactly the diameter one wants either in styrene, acrylic or wood. Otherwise you might have to make do with the more limited choice of wooden dowel from the nearest timber merchant or hardware store, or failing that really ‘making do’ with something you have around such as a thin cardboard tube. It’s important though that whatever you use has a firm surface and that superglue sets well on it i.e. a balsawood dowel may not be strong enough.

cutting treads

I am, as always, using 1mm Palight foamed Pvc to solve the problem of needing something that is thin and easy to cut with accuracy, but still having a firm surface, straightness and resilience. Above, I’ve started to cut out some of the treads. I’ve been careful to give each a little bit of the curve of the pole diameter at the centre so that they glue better to it, but the outer edge could either be curved or straight.

cutting risers

Above I am dividing up a strip measured the full length of the steps to make the risers. Since each riser will be glued along the underside of each tread but the preceding tread glued against the bottom of its face, each riser is the proper height i.e. in this case 200mm in scale.

assembling steps

The best way to start constructing is, as I say, to superglue pairs of tread and riser together first, trying to keep to right-angles. Here I haven’t cut all the treads out yet but have fixed the pole (with a spot of glue) in the centre so that the sheet serves as a base and helps to check the positions of the steps as they’re added upwards. This can easily be sliced off later (I haven’t glued the bottom step to the base!).

assembled steps

If this positioning is followed it shouldn’t be necessary to mark the correct heights of steps on the pole itself. In any case there will be some slight variation however exact one tries to be; the overall effect will look right!

balustrade drawing

Often it’s not the steps that present so much of a problem, it’s the balustrade. One solution for achieving this is to cut it as a flat piece which can then be glued and wrapped around in one piece. Again, foamed Pvc is ideal for this because it is flexible but thin styrene sheet or even stencil card would also be suitable.

cutting balustrade

attaching balustrade

The positioning needs to be checked and then fixed in stages since this is not possible in one go. I’ve only made a portion here to show the principle.

completed stair portion