‘Beginner’s Basics’ – Mouldmaking and casting

The following is a copy of an introduction I’ve put together to go in the Methods/- mouldmaking&casting section, for people who have never done any mouldmaking or casting before but would like to try. It describes the basic processes, lists all that is needed, but above all encourages starting simple! I may add to it or improve it over time.

using meltable vinyl

Photo Astrid Baerndal

What you can achieve if you know how to make moulds and casts

Everyone I’ve tutored so far has experienced a strong sense of achievement in making a successful casting, even if the original form is ‘found’ i.e. not of their own making. It’s curiously exciting, unpacking a mould for the first time to see how a cast has turned out. Even though the form itself will be no surprise, it feels like making something new.. it becomes one’s own creation!

With more practise it’s not hard to produce your own sculpture edition i.e. a series of casts, or it may open up ways of manufacturing your own functional product. It’s probably fair to estimate that at least 90% of the things we use in our daily lives have relied upon some form of casting for their manufacture. If you are, or intending to be, a prop-maker or model-maker, it is a fairly essential skill to have. Model-making often involves repetition of forms which make up the whole, whether the columns of a Greek temple or a set of replacement hands for an animation puppet.

Repetition is one thing, but mouldmaking/casting is not all about being able to repeat. It has been an inseparable part of sculptural or form-making methods for thousands of years and its importance hasn’t diminished with the development of new materials! It means for example that a form can be modelled in a material which makes modelling easy, such as clay or modelling wax, but which can then be transformed into something permanent such as metal or concrete. Also, during the process of creation, sculptors may wish for a way of ‘saving’ an important stage in their work rather like one can on the computer. Although more time-consuming, being able to make a cast will achieve just that!

It’s true that mouldmaking/casting can require quite a time-investment; also that it needs patience, planning, a methodical approach and a certain amount of prior knowledge. One needs these things if one wants consistently good results. But it’s also true that ‘trial and error’ are the best teachers; that there is room for spontaneity and invention, and that often a sequence of simple steps will achieve more than one complicated one!

fossil trilobite

If it can happen accidentally in nature, as illustrated by the fossil trilobite above, can it be so hard to achieve on purpose? What nature needed was the right conditions .. and plenty of time!

What is involved?

Mouldmaking/casting involves covering the object you want to copy in a material which will then become firm enough to be detached from it and keep its shape, so that a hollow space or negative of the object is left .. the mould .. which can then be filled with a casting material to make an exact replica of the shape. Either the mouldmaking material needs to be flexible to be easily released from the original object and any casts made in it; or a hard, inflexible mould can be made if instead both the original object and the casts are themselves flexible.

The most effective and most used flexible mouldmaking material today is silicone rubber which can either be poured as a liquid or (with a special thickener) brushed as a paste on the surface of the original object. If it is poured as a liquid temporary walls of cardboard or clay need to be set up around the object to contain the liquid rubber while it sets .. or cures as the proper term is. Many different forms of object can be reproduced in this simple way by just creating a block mould of silicone around them as long as they have one flat side (the side that’s secured to a board first and therefore not covered by the silicone) which then becomes the entry or pouring hole of the mould. If the flat side happens to also be the largest area of the form (for example, a rounded paperweight) when the cured block is detached from the board and turned over to take it out, it will be pushed out fairly easily by flexing the silicone. Often though that flat side will not be the largest part of the form, for example in the case of a modelled head with part of the neck. This form involves undercuts.

This is what ‘undercutting’ means! Imagine trying to pull someone’s head through a hole the size of their neck. The space around the neck ‘undercuts’ the size of the head so even if this space was filled with flexible rubber it would have to stretch a great deal to get the head out in one piece. ‘Undercutting’ is the commonly used term, but it’s really not a very helpful one! It’s the space around that undercuts or ‘underfills’ whereas it’s clearer if one thinks of the form itself as overhanging its base. These ‘undercuts’ are likely to occur not only in the overall shape but often in the details, in this case the ears for example.

But silicone rubber has the valuable property not only of flexing easily but returning exactly to its original shape without distortion. This means that if you do make a block mould form around a head shape and the sides of the mould are thick enough (i.e. around what will become the negative void of the head and neck) the silicone can be split with a sharp knife just enough to be able to take the form out. Afterwards you will have to coax the cut surfaces back into the right position, but the silicone should ‘marry’ again perfectly if it has set properly in the first place, so much so that you probably won’t see the cut anymore! With the right gentle support i.e. rubber bands or tape binding the outside but not too tightly, the mould can be filled as if it were uncut.

splitting a mould

A more ‘advanced’ method, often necessary for more complicated or larger forms, is to make a detachable plaster jacket (also known as the mother mould) to fit around the silicone part which ensures that it keeps its shape under handling. For an example of this method see the posts ‘Two legs good..’ parts 1-3 from January 2012.

Another important aspect that I haven’t yet mentioned is whether the original form can be covered in silicone just as it is or whether a barrier or release agent may be needed. Silicone will hardly stick to anything except itself (the other reason for its suitability) so usually if the original form has a sealed or dense surface (tight-grained or varnished wood, stone, plastic, soft or hard natural clay, modelling wax, polymer clay, etc.) there is no need for a separate barrier. One exception is glass, because silicone will bond with this as both share a silica base. But also if the surface of the original form is fragile or porous it will either need sealing, by varnishing if possible (or a coat of Pva wood glue can work well), or by greasing with Vaseline just prior to covering with silicone. Care must be taken to work the Vaseline into the surface but not use too much in case it fills surface detail.

An average silicone will need 24hrs to properly cure, though there are some special fast-curing ones which will cost a little more. Once cured the mould can be used. The most common way of making a cast is to fill the mould with a liquid which changes into a solid, as is the case with resins or plaster. Resins for casting are supplied in two liquid parts which when combined in the right proportion start to harden. These two parts need to be thoroughly mixed before being poured into a mould. For polyurethane resin these parts are mixed in equal amounts whereas polyester resin consists of the resin itself and a hardener or catalyst which is added in a very small proportion. Plaster is supplied as a powder which first needs to be mixed with water and this is done by first shaking the plaster into the water, never the reverse. Resins are often the best options for casting small, delicate or highly detailed forms for which plaster would be too brittle. Plaster is a much better option for bulkier forms, such as life-sized heads, since casting these in solid resin would be very expensive. Resin sets on the whole within 30mins and plaster can take a touch longer.

polyurethane resin and Fillite

Here above, polyurethane resin is being portioned out in equal amounts using disposable plastic cups. Parts A and B of the resin are different in appearance. The third cup contains an equal amount of grey ash filler known as Fillite. It is not essential to add this other ingredient to resin but various fillers are often used to add to the volume of the resin (making it cheaper), to make casts lighter or to change the surface appearance.

When you pour a liquid into a container you assume that the liquid will fill the whole of that container evenly, at least up to the level that you stop at. In casting, because the ‘container’ one wants to fill is rarely a straightforward shape, it can be rather different in practice. When liquid fills a shape it will push the lighter air upwards and out easily, but only if the air can escape. Air can become trapped in parts of a complicated shape, meaning that the casting material will not be able to fill those parts. Sometimes air can be helped out by tipping/rocking/tapping the mould while filling it but often this isn’t enough. The simplest and often the most effective solution is to give air extra means of escape by cutting little channels in the mould, leading from the problem parts to the outside.

That may be one major challenge solved but unfortunately there are other ones standing between you and a perfect cast. Casting materials are very pourable, but they’re not like water .. even the thinnest polyurethane resins are a little thicker. So they may bring air with them in the form of bubbles. Most of these air bubbles will rise during the filling of the mould but there are always a stubborn few that manage to lodge themselves where they can’t rise out. Again, a good deal of tapping, rocking etc. can help a lot! It also helps a lot if you can manage pouring in quick stages, especially with deep moulds, interspersed with the above. Resins will fill a mould very uniformly because they don’t separate out, whereas with plaster any excess water in the mix will be forced upwards and may collect in the same places that trap the air making ‘rivulet’ lines in the cast surface. The solution is .. if you want perfect casts in plaster you have to get the mix right.

air and water damage

The photo above illustrates what sometimes happens when casting a head shape in plaster. The overhang of the chin can trap both air and excess water, causing damage to the cast surface.

How expensive are the materials?

Unless you’re planning to cast in metal the most expensive materials you’re likely to use are silicone rubber which averages around £22 per litre and polyurethane resin which averages £13 per litre. Think of a litre in volume as a block 10x10x10cm. A lot of small forms can be made from this amount, especially if a filler is used to extend it as above. Moulds will always be much bigger in volume than the object itself so the main expense is silicone if this is used. Here I am confining this basic overview to the making of simple block moulds (which can be rather uneconomical in the amount of silicone used) but there are more ‘advanced’ ways of building up layers of silicone rather than blocks meaning a great deal less is used. After trying out small block moulds if you are interested to learn more about these further methods look at the posts ‘Making a hollow 2-piece cast in fibreglass’ parts 1-3 from August 2012.

silicone 'skin'

For example, above I am coating a modelled head with silicone rubber which has been made thixotropic or ‘non-slump’ by adding a special ingredient. A thick layer is built up in this way and left to cure. Before cutting the cured silicone layer into halves I made a plaster shell around the form, also in two interlocking halves so that it could be easily separated. In progress below is the mould being filled, showing another method of saving expense (and weight). Here I am making a hollow cast in filled resin by first building up a shell manually in two pieces which will later be joined together. The above mentioned post also deals with how to do this.

making a hollow shell casting

There is also a range of much cheaper alternatives to both silicone rubber and polyurethane resin which can work just as well dependent on your purposes and the quality needed. Polyester resin can cost half as much especially in larger quantities; Vinamold can be a third of the price of silicone and it is also reusable, by melting it down again; hard casting plasters are a small fraction of the cost of resin, and just as suitable for many larger forms.

Silicone cannot be made liquid again for re-use once cured but old silicone moulds can be granulated using a traditional meat grinder. The granules can then be added to the mix when fresh silicone is made up

recycling silicone

Where to get the materials?

If you get your mouldmaking and casting materials from a regular art or hobby shop you’ll get discouraged pretty quickly because of the expense. Here you will find versions of them at ridiculously high prices for impractically small amounts! If you live in London you will pay much less for better quality materials .. and get reliable advice! .. if you go either to Tiranti’s in Warren St or the 4D modelshop near Tower Bridge (details in the Suppliers list). If you live somewhere else both of these specialist suppliers have an efficient online-ordering service, and both conveniently list their prices including VAT. I have included a number of other nationwide suppliers in the suppliers list.

Is expensive equipment needed?

The most expensive piece of equipment I use is a digital kitchen scales which cost around £20. Professionals who provide mouldmaking/casting services for a living may well benefit from special ‘degassing’ or pressure chambers to eliminate air bubbles etc. but one can often achieve perfectly good results without them.


What equipment do you need apart from the materials?

This list is long because it’s thorough! None of these accessories are expensive and some may not be needed dependent on what you’re working with:

some form of covering for the work surface (i.e. newspaper or polythene) because it can get messy

another level area (check with spirit level), out of the way, where moulds can be placed while curing

baseboards (size depends on the size of form you are working with. The baseboard should be around 5cm larger on all sides. I use offcuts of Palight foamed Pvc in various thicknesses; offcuts of smooth 5-7mm MDF or sometimes strong cardboard

something to make containment walls with (I use either scrap cardboard, any thickness or type strong enough to stay upright; foamed Pvc sheet; Lego bricks; plasticine, modelling wax or natural clay)

mixing cups or pots of various sizes (I use disposable plastic party cups £1 per 100 for mixing resin, and plastic milk bottles cut down for mixing plaster)

reusable clear plastic measuring beakers (these are essential for mixing silicone rubber. Available in different sizes, but I use medium-sized ones which hold 200ml, calibrated in 25ml stages. Available from Tiranti). Leftover silicone should be left in the pot and once cured can be easily pealed off

mixing sticks (‘coffee stirrers’ i.e. from Starbuck’s, Costa’s etc. are fine for small amounts of resin. Disposable chopsticks are excellent! Larger, broader sticks are better for stirring plaster .. better than using spoons. Mixing sticks should either be thoroughly cleaned or kept separate (i.e. those used for resin, those used for silicone etc.) to avoid possible contamination

digital weighing scales, as mentioned (mine is a Salter brand ‘Aquatronic’ which takes up to 5kg measuring in 1g increments, available online c. £20)

disposable plastic pipettes may be needed (dependent on the brand of silicone used) for dosing small amounts of additive. These can be found on ebay for 4p-10p each

a spirit level to check that moulds are left curing on a level surface (see below)

a small sharp knife, preferably Swann Morton surgical scalpel for slitting and trimming moulds, cutting cardboard for containment walls, etc

a cutting mat to cut on (A3 is more convenient)

UHU glue or similar will be needed to temporarily fix the original object to the baseboard and to fix containment walls if cardboard is used

Vaseline petroleum jelly is essential as a barrier between silicone and any porous surfaces such as soft wood or cardboard

white spirit and small brushes (you will need white spirit in case of silicone spillage. Uncured silicone rubber dissolves in white spirit. You will also need it to clean brushes afterwards if you use them for brushing a first ‘detail coat’ of thin silicone on the original form)

What sort of space is needed? Is it possible to work in the corner of a lounge or kitchen?

Yes, if you’re content to work on small things and you can keep children at a respectful distance. But often it can be difficult to simply clear things away at short notice. Some extra space is needed to leave moulds undisturbed for a day while curing; the room should at least have possibilities for ventilation; table-top and floor should be covered in case of spillages.

What are the health & safety issues?

There are relatively few materials commonly used for mouldmaking and casting that pose serious health & safety issues, but those that do need special measures. Polyester resin for example should never be used in the home because firstly the build-up of styrene emissions is harmful and secondly the catalyst (MEKP methyl ethyl ketone peroxide) is highly flammable and even explosive!. The clear version of polyurethane resin (different from the standard opaque versions) should not even be considered! Dust-masks should be worn whenever handling large amounts of plaster or any other substance, such as a filler, which becomes easily airborne. Good ventilation is essential to dissipate the vapour from solvents such as white spirit or acetone, which are of course also flammable. It is essential to read and act upon the MSDS (Material Safety Data Sheet) for any material you are using.

How should you start?

I’m often asked for advice from people wanting to make the most complicated moulds or casts before they’ve experienced even the simplest handling of the materials. It’s far better to start simple, building up an idea of what can be achieved by the simplest of means first and then, if one needs or wants, extend these means little by little.

For example, start by making the simplest kind of flat, 1-piece, open mould. Make or choose a prototype (the original form to be reproduced) which can be fixed down to a flat board, has an interesting amount of detail (to make the effort worthwhile) but fairly minimal undercutting. Start by exploring what’s possible by making simple block moulds first. Many complicated forms can be more achievable by making them in easily-mouldable parts (each requiring just a simple mould) which can then be easily filled and the parts then assembled. The following is an example:

chair prototype parts

The prototype pieces for this chair were cut and smoothed from 2mm Palight foamed Pvc and fixed to a flat Pvc board using small spots of superglue. The upholstered parts are cut and sanded foam from Kapa-line foamboard also superglued in place. The Pvc needs no barrier against the silicone rubber but the unpainted foam needs a light greasing of Vaseline because otherwise the silicone would grab into the porous surface too much. Catalysed silicone rubber (without addition of a thickener) will reach every detail when poured over the prototype. Standard silicones remain fluid for some hours and during this time usually all trapped air rises to the surface away from the prototype, but often as an extra precaution a first thin layer of the mix can be brushed on and left to settle a bit before the rest is poured. This is generally known as the detail coat. Because silicone ‘travels’ as far as it can before starting to harden it is important to ensure that the prototype pieces are secured without any gaps underneath them.   Below shows the cardboard containment walls for the mould block, fixed to the Pvc base using UHU. It is important to ensure that there are no gaps in the containment walls. These should also be Vaselined inside to prevent the silicone from sticking to the cardboard. When the box is filled it should be put on a level surface out of the way i.e. not just flat, but checked with a spirit level. This is important especially with very flat moulds because when they’re cast into they should also lie level, otherwise the liquid casting material will set at a slant.

preparing for the mould

This mould took 24hrs to cure and parted easily from the prototype pieces. The mould is shown below along with some castings in polyurethane resin (plaster would never be strong enough for the chair legs and arms). It would be very difficult to mix up polyurethane resin and then pour it exactly into these small, shallow shapes. Instead the resin is poured over the main parts, a little overflowing, and teased into the finer ones with a cocktail stick. Polyurethane resin is clear until it starts setting so air bubbles can be seen and teased away in the process. It’s best to fill generously and then, taking a straight edge of plastic or card, draw it steadily over the mould surface to remove the excess. Polyurethane resin can generally be demoulded (taken out of the mould) after 30mins, but small parts may still be pliable. This is useful because trimming them is easy at this stage. It’s usually better to wait a further few hours at least before the resin can be sanded. I needed to do this to get a perfectly flat finish on both sides, but this was not much work because polyurethane resin sands easily.

mould and cast parts

Polyurethane resin also bonds extremely well with superglue. Below are the assembled chairs which have been primed with Simoniz acrylic car primer, ready for further painting.

assembled chairs with primed surface

Some things I wish I’d understood better from the beginning

The original form can be made of anything which will hold together long enough for the mould material to set. The possibilities are endless!

One should always aim for exactness in dosing chemicals together as a general rule, but many are fairly forgiving. For example if by mistake too little catalyst is mixed with the silicone rubber, i.e. 75% of what it should be, the silicone will still cure but just take much longer (perhaps a few days instead of one).

catalyzing silicone

Photo Astrid Baerndal

It’s generally much easier to divide up a complicated original form into separate pieces that can be easily and perfectly cast, than it is to achieve a perfectly filled casting in a complicated mould!

Polyurethane resin needs to be mixed quickly ..but thoroughly! It’s difficult to judge how long one can risk continuing to mix before it’s too late to pour because when it changes this is not gradual but sudden. One reason why I use thin, disposable plastic cups for mixing is that I can then feel the slightest warmth through the bottom of the cup. At this point it should be poured! If polyurethane resin is not completely mixed, most will still set but there will be softer patches ‘bleeding’ unmixed resin which may remain like that.

When plaster is sprinkled or shaken into water a good ‘rule of thumb’ is to continue until pretty much the whole of the water volume is filled with settling plaster and there is little or no residual water ‘swimming around’ on the surface. The mix can be stirred at this point .. but one can wait! The plaster won’t start setting until stirring begins. Waiting a few minutes will release more air, help to dissipate lumps and therefore give a better mix.

Another ‘rule of thumb’ when wanting to mix the right amount of plaster for the job is that the volume of plaster mix will roughly double the volume of water you start with.

Small ‘pinholes’ in the surface of a plaster cast are often caused by bubbles of air attaching themselves to the mould surface during casting. This can be reduced by breaking the surface tension at the mould surface by using what is known as a surfactant. The easiest method is to use a detergent such as Windowlene, diluted with water and sprayed lightly into the mould prior to casting.

6 thoughts on “‘Beginner’s Basics’ – Mouldmaking and casting

  1. Pingback: ‘Beginner’s Basics’ – mouldmaking and casting explained - Havuz Pack

  2. very intetesting thank you…can plaster paris be used as a filler for resin?…do you have any info on hardening plaster of paris moulds to make them more durable when casting in lead?…any way of making plaster paris non pourous so that resin can be cast in it?…any way of making resin less brittle?…i have many ideas and have done two piece lead castings before….im researching using resin….one tip…when doing two piece plaster bubbles raise and collect under the master on your first piece…make your second piece and the bubbles rise away grom the master…discard your first piece and make a third piece…

    • Thanks for the info! As for the questions .. yes, I’ve used plaster to fill PU resin but it needs to be totally dry otherwise the resin will foam a bit and as plaster is ‘hydroscopic’ this is difficult. Sadly, no ideas re the others.

  3. Pingback: ‘Beginner’s Basics’ – mouldmaking and casting explained – My Blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.